至顶网服务器频道 05月11日 新闻消息: 在不久前结束的2017浪潮云数据中心全国合作伙伴大会(IPF)上,浪潮秉承坚持围绕"计算+"战略,进一步明确业务重心,聚焦智慧计算,发展开放融合的计算生态,建立智慧计算市场的领导力。
智慧计算的未来在商业应用, 随着人工智能应用的快速发展,AI所需的计算力也急剧攀升。此前,浪潮就已在AI计算平台、架构领域布局,拥有业界完整的支持2、4、8 GPU卡的异构超算服务器阵列。而本次IPF上,浪潮发布了业界最高密度的、单机点支持16块GPU卡的SR-AI整机柜,进一步优化了AI计算硬件架构,改变原有CPU-GPU紧耦合状态,实现GPU资源的灵活池化扩容。
人工智能成为未来社会发展重要动因
更复杂的AI应用呼唤更强大的计算平台
深度学习概念和浅层学习算法已经被提出多年,而人工智能近年才开始逐渐升温,原因是人工智能技术的进步受限于计算平台的性能和数据量的积累。举个例子,从IBM深蓝战胜卡斯帕罗夫,浪潮天梭战胜五位象棋大师,再到谷歌AlphaGo战胜围棋冠军李世石,解决问题的博弈树空间扩大了237数量级,这其中需要更优化的算法,也需要更强大的计算平台来支撑实时运算。
除了AI游戏,在现实生活中人工智能的应用也越来越广泛和复杂,从人脸签到打卡,到行动轨迹追踪,再到无人驾驶汽车,更复杂的AI应用呼唤更强大的计算平台。传统的单机单卡、2卡甚至8卡已经不能满足多样化的业务需求,浪潮SR-AI整机柜服务器以单节点16卡的更高密度,满足当下快速膨胀的AI计算能力需求。
SR-AI整机柜服务器
更高密度+资源解耦,10倍于传统AI计算设备性能
此次,浪潮与百度联合发布的SR-AI整机柜服务器,符合最新的天蝎2.5标准,是全球首个采用PCIe Fabric互联架构设计的AI方案,通过PCI-E交换机和GPU BOX两个模块的配合,打破GPU和CPU的物理耦合,让两者可以灵活扩展,相对于传统的GPU服务器,这是种颠覆式的创新,带来了高密度、低延迟、易扩展等优势。
首先,传统的AI计算设备集群需要通过高速网络实现数据的交互,着会带来us级以上的延迟,而SR-AI整机柜中GPU BOX间的互联是通过PCI-E交换机来实现,并借助GPUDirect RDMA技术可以大幅下降跨节点GPU间的通信延迟,能够实现ns级网络延时。
第二,SR-AI整机柜的I/O BOX单节点即可实现支持16个GPU的超大扩展,并且可以通过PCI-E交换机实现4个BOX、64块GPU的级联,峰值处理能力达到为512TFlops。
第三,SR-AI整机柜的GPU资源扩展无需同步配置高成本的IT资源(比如IB交换机),成本可优化5%以上,并随着规模上升成本优势越明显。
SR-AI整机柜是面向更大规模数据集和深层神经网络的超大规模AI计算平台,能够高效支撑复杂的深度学习线下模型训练任务,适用于图像识别、语音识别、自然语言处理、搜索排序等AI应用。百度实际业务的测试数据显示,SR-AI整机柜相比传统的AI方案性能提高5-10倍!
高效开发框架+算法协同优化,AI计算效率最大化
与 CPU 少量的逻辑运算单元相比,GPU\FPGA\MIC这种协处理加速设备整个就是一个庞大的计算矩阵,可实现 10-100 倍应用吞吐量。但同时,这种庞大的并行能力需要付出代价:需要较强的软件开发能力和算法优化能力。
为此,浪潮将高效深度学习框架Caffe-MPI开源,与众多开发者共同优化,为深度学习的用户提供了更便捷、更高效的应用手段。浪潮Caffe-MPI能够在保证正确率相同的情况下,在4节点下16卡的性能较单卡提升13倍,并增加了对cuDNN库的支持,使程序开发人员能够轻松实现高性能深度学习代码的开发。
在算法方面,此前浪潮与客户在GPU加速加速流量特征分析技术开展合作,通过软硬件和算法的协同优化,使训练24万样本的时间单节点4GPU相对于单GPU加速3倍,单机4GPU卡程序性能较原始版本加速270倍。
数据显示,2016年浪潮在人工智能计算领域的市场份额超过60%,为百度、阿里巴巴、腾讯、奇虎、科大讯飞、Face++等中国人工智能企业,提供基于GPU、FPGA、KNL等协处理加速服务器和caffe-MPI等软件、算法优化。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。