ZD至顶网服务器频道 06月13日 新闻消息:Nvidia公司正准备进军大数据业务,Nvidia ANZ地区经理Mark Patane称,未来几年这将是一笔价值数十亿美元的业务。
Patane认为,GPU将会是帮助企业处理大数据分析的关键解决方案,他指出,过去两年中Nvidia一直与Facebook和Google这样的公司合作帮助他们处理数据。
“他们找到我们,因为他们意识到无法利用普通的计算机,因为这些数据实在是太庞大了。过去几年他们一直与我们合作使用GPU,”他说。
Nvidia机器学习解决方案架构负责人Jon Barker博士进一步解释说,企业越来越多地承担起需要找出如何高效地处理每天他们收集来的数据的方法,并强调每天处理的数据量高达2.5EB,而且未来三年这个数据量将翻一番。
“其中大多数数据不是表格、结构化数据;大多数是图像、音频和文本。显然不管你是试图把控社会的脉搏,了解人们对你的品牌的情感,你都要基于各种事件做交易决策,或者如果你试图开发智能机器人辅助外科医生,或者自驾卡车,这些数据都将是应用的‘燃料’,”他表示。
“问题是我们如何通过分析数据了解内容,答案就是我们需要能够看到、听到、读到数据的机器,并且能够以超出人类水平和人类步伐给出理由。”
Patane认为,除了Nvidia一直提供GPU的高等教育和研究领域之外,大数据的增长对于Nvidia拓宽在商业市场的覆盖面来说也是一个机会。
“不管你是莫纳什大学,大的电信运营商,Google,在医疗领域,还是研究员——都需要GPU,”他说。
“根本的区别是,你可以在非GPU系统上尝试和运行数据,一旦你开始启动,运行算法,你可能需要数周时间才能拿到答案。有了GPU,这个速度会大大加快,几分钟内就可以得到回复。”
不过据Patane称,使用GPU处理大数据目前还是一件比较新的事情,GPU一直被用于工程分析、视频分析、视频回放用于病毒和DNA建模。
Nvidia最近发布了DGX-1服务器,采用Tesla P100 GPU,专门帮助企业处理大数据,Barker称这将帮助企业专注于应用开发而不是数据处理上。
好文章,需要你的鼓励
尽管2026年智能手机外观可能变化不大,但内部技术正发生飞跃式进步。AI原生处理器、新型连接技术和先进显示系统正将日常设备转变为具备企业级功能的强大个人平台。这些趋势对企业和消费者同样重要,因为人们携带的手机决定了他们如何访问数据、协作办公、管理工作流程和使用数字服务。
卡内基梅隆大学团队提出DistCA技术,通过分离AI模型中的注意力计算解决长文本训练负载不平衡问题。该技术将计算密集的注意力任务独立调度到专门服务器,配合乒乓执行机制隐藏通信开销,在512个GPU的大规模实验中实现35%的训练加速,为高效长文本AI模型训练提供了新方案。
《时代》杂志宣布AI及其架构师为2025年度人物,包括扎克伯格、苏姿丰、马斯克等八位科技领袖。编辑认为今年是AI全面潜力显现的关键年份,这项技术加速了医学研究和生产力提升,让不可能变为可能。从企业高管到教师学生,所有人都在思考AI对生活的颠覆性影响。
清华大学研究团队提出3DThinker框架,首次让AI具备类似人类的三维空间想象能力。该系统在推理过程中插入特殊的三维想象符号,不依赖外部工具或大量标注数据,就能从有限的二维图像中构建三维心理模型。在多个空间推理基准测试中,3DThinker相比传统方法性能提升达50-100%,为自动驾驶、机器人导航、虚拟现实等领域的AI应用开辟了新路径。