ZD至顶网服务器频道 09月10日 评论分析(文/赵效民):
什么是异构计算?
异构计算,可能在很多人看来感觉高深莫测,我们可以先用一个比喻来简单的解释一下。比如在做简单的整数算数时,知道算法口诀的人,心算即可,但遇到比较复杂的算数问题时,就得需要一个计算器了,而在这个运算过程中,一些简单的计算可以提前由心算完成再输入计算器,比如计算“(5+2)÷26”,可能我们直接就输入“7÷26”了。又或者是完全交给计算器进行计算,但这也需要人脑控制手指进行计算器的数值输入,此时你的大脑与计算器就构成了完成这道数学计算任务的“异构计算系统”。
就像你的大脑的结构与计算器完全不一样,异构计算,顾名思义就是在系统内,参与计算的执行单元在指令集架构(ISA, Instruction Set Architectures)层面是不同的。最为典型的例子,就是通用计算图形处理器(GPGPU,General-Purpose computing on Graphics Processing Units),与现场可编程门阵列 (FPGA,Field-Programmable Gate Array)和传统CPU平台组成的异构计算系统。从严格意义上讲,ISA相同,只是不同大小的处理核心的组合,并不算是异构计算,比如英特尔的x86处理器+MIC(集成众核加速器),以及ARM处理器的big.LITTLE大小核心的混合设计。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。