微软发布了一项突破性的冷却技术,可能从根本上改变AI芯片的散热方式,有望彻底革新数据中心的设计和效率。
这家科技巨头表示,已通过"微流控"技术实现了芯片级冷却——这是一种AI辅助技术,在硅芯片本身嵌入液体通道。微软称该技术可使GPU硅芯片的最高温度降低65%,据称比传统冷板冷却效果好三倍。
微软表示,这一冷却突破可以降低运营成本,并成为衡量数据中心能效的关键指标。
微软云运营和创新企业副总裁兼首席技术官Judy Priest在声明中说:"微流控技术将允许更高功率密度的设计,这将启用客户关心的更多功能,并在更小空间内提供更好性能。"
**通过仿生学实现冷却**
微流控系统在芯片背面直接蚀刻微小通道(见主图),让液体直接流动以在热源处移除热量。目前GPU冷却的行业标准使用冷板,但冷板与热源之间被数层材料分隔,限制了散热量。随着芯片速度更快、功能更强大,产生的热量也会增加。
微软云运营和创新高级技术项目经理Sashi Majety在博客文章中说:"如果你仍然严重依赖传统冷板技术,你就会陷入困境。"
在微流控原型设计期间,微软与瑞士初创公司Corintis合作,在仿生设计上使用AI优化。芯片上蚀刻的通道类似叶脉,公司称这能产生更高效的冷却路径。
Moor Insights & Strategy副总裁兼首席分析师Matthew Kimball在邮件采访中说:"微软在微流控方面的工作可以显著改变芯片冷却的交付方式,并具有很强的颠覆性。我很想看到英伟达、AMD、英特尔等公司的一些信号,表明这是一个更大的行业趋势。"
该公司计划仅在本季度就在基础设施上投资300亿美元以满足AI需求,包括开发用于数据中心工作负载的Cobalt和Maia芯片。微软希望在未来几代自研硅芯片中融入微流控冷却技术。
微软技术研究员兼Azure企业副总裁Ricardo Bianchini说:"如果微流控冷却能用更少电力为数据中心降温,这将减轻对附近社区能源网格的压力。"
瑞士IT咨询公司CTOL Digital Solutions首席执行官Max Zhang在LinkedIn帖子中称微流控技术"突破性"。他写道:"微软的方法不仅提升了芯片性能,还改善了效率——提供的潜在散热效果比传统系统好三倍。这一创新可能会设定行业标准,并释放更密集、更高性能的芯片设计……投资者应密切关注;消除热量的竞争将定义下一波科技巨头。"
**空心光纤的速度优势**
微软还表示将扩大其新网络电缆产品的可用性,该产品承诺提供快速的AI和云连接。空心光纤(HCF)与传统单模光纤(SMF)相比,数据传输速度快47%,延迟低33%。
微软与康宁和贺利氏合作,正在扩大HCF的制造规模,以在Azure全球网络中部署——为其全球互联网基础设施创建新标准。
微软云网络工程经理Jamie Guadett在声明中说:"这一里程碑标志着重新构想云物理层的新篇章。"
Q&A
Q1:微软的微流控冷却技术是如何工作的?
A:微流控技术在芯片背面直接蚀刻微小通道,让液体直接流动以在热源处移除热量。这些通道类似叶脉结构,采用仿生学设计,通过AI优化产生更高效的冷却路径,可使GPU芯片最高温度降低65%。
Q2:微流控技术比传统冷却方式有什么优势?
A:微流控技术比传统冷板冷却效果好三倍,因为传统冷板与热源之间被数层材料分隔,限制了散热量。微流控技术允许更高功率密度的设计,在更小空间内提供更好性能,同时降低运营成本和减轻能源网格压力。
Q3:空心光纤技术有什么特点?
A:微软的空心光纤(HCF)与传统单模光纤相比,数据传输速度快47%,延迟低33%。微软正与康宁和贺利氏合作扩大制造规模,计划在Azure全球网络中部署,为全球互联网基础设施创建新标准。
好文章,需要你的鼓励
Google Photos正向美国Android用户推出会话式编辑功能,用户可通过语音或文字提示来编辑照片,而无需手动操作。该功能首先在Pixel 10手机上推出,现已扩展到更多设备。用户需将Google账户设置为英文,并开启人脸分组和位置估算功能。通过点击"帮我编辑"按钮,用户可直接说出编辑需求,如去除背景中的陌生人、调亮颜色或消除眩光。该功能使用先进的Gemini技术,并提供原图与编辑后照片的对比显示。
字节跳动团队提出RewardDance框架,首次系统性解决视觉生成中的奖励模型扩展问题。该框架通过将奖励预测转为生成式任务,并将模型规模扩展至260亿参数,同时集成任务指令、参考样例和推理能力,有效解决了"奖励作弊"问题。实验显示,在文本生成图像任务中质量提升10.7分,视频生成性能改善49%,达到行业领先水平,为AI视觉创作提供了更强大可靠的技术基础。
本文深入分析了斯坦福大学AI安全中心举办的研讨会所展示的AI安全领域最新进展。文章探讨了AI安全的两个重要方向:构建更安全的AI和让AI变得更安全,强调这两种方法需要有机结合。通过分析物理AI(如人形机器人)与生成式AI结合的安全挑战,以及可达性分析在AI安全中的应用,展现了当前AI安全研究的前沿技术和实际应用场景。
ByteDance团队开发的Mini-o3系统通过深度多轮推理突破了传统AI视觉理解的局限。该系统能像人类侦探般进行几十轮的视觉探索,在困难的视觉搜索任务上准确率达48%,相比现有模型提升显著。核心创新包括挑战性的Visual Probe数据集、多样化推理策略训练和突破性的过轮掩码技术,实现了测试时思考轮数的自然扩展。