UnifabriX 如何通过技术突破 AI 内存瓶颈

UnifabriX 公司推出基于 CXL 连接的外部 MAX 内存设备,通过创新的内存架构设计,有效解决 AI 领域日益突出的内存带宽瓶颈问题。该方案不仅能显著提升 AI 处理性能,还可大幅降低部署成本,为大规模 AI 模型的训练和部署提供了新的解决思路。

UnifabriX 表示,其基于 CXL 连接的外部 MAX 内存设备可以显著提升 AI 处理性能。

在之前的一篇文章中介绍了该公司的 MAX 内存技术。UnifabriX CEO Ronen Hyatt 引用了 Amir Gholami 等人的"AI 和内存墙"研究论文来说明他的观点。研究人员指出:"空前的无监督训练数据以及神经网络扩展法则,导致模型规模和大语言模型的训练/服务计算需求激增。然而,主要性能瓶颈正逐渐转向内存带宽。在过去 20 年中,服务器硬件峰值 FLOPS 每两年增长 3.0 倍,远超过 DRAM 和互连带宽的增长速度,后两者每两年仅分别增长 1.6 倍和 1.4 倍。这种差异使得内存,而非计算能力,成为 AI 应用的主要瓶颈,特别是在服务部署方面。"

论文中的图表展示了这种影响: 内存墙即是内存带宽与硬件峰值 FLOPS 之间的差距。

论文作者总结道:"为了更好地理解这些数字,过去 20 年间,硬件峰值 FLOPS 增长了 60,000 倍,而 DRAM/互连带宽在同期仅分别增长了 100 倍/30 倍。在这种趋势下,内存——特别是芯片内部/芯片间的内存传输——将很快成为部署大型 AI 模型的主要限制因素。因此,我们需要重新思考 AI 模型的训练、部署和设计方式,以及如何设计 AI 硬件来应对这个日益严峻的内存墙挑战。"

Hyatt 修改了图表,加入了 PCIe 总线各代以及 CXL 和 NVLink 的扩展线,显示 IO 架构速度的增长同样未能跟上硬件峰值 FLOPS 的步伐。

即使使用 InfiniBand 连接 NAND 驱动器,GPU 服务器的内存和闪存存储之间仍存在性能差距。通过 CXL (未来还有 UALink) 连接外部内存,可以缓解这一性能差距。

Hyatt 表示,内存架构优于 InfiniBand 网络,能够提供更高的性能,而 CXL 和 UALink 是可与 Nvidia 专有 NVLink 相媲美的开放内存架构标准。

除了提升性能外,UnifabriX 的 MAX 内存还可以节省成本。

在 UnifabriX 的示例场景中,16 台服务器(包括 4 台 GPU 服务器)中,每台配置 6 TB DRAM,总容量为 96 TB。总内存成本为 160 万美元,而 UnifabriX 指出内存利用率不到 30%。

通过添加一个容量为 30 TB 的 MAX 内存单元,这 16 台服务器现在每台可以配置 2.25 TB 内存,总计 66 TB 内存,成本为 67 万美元,且具有更高的利用率。服务器获得按需内存容量和带宽,应用程序运行更快。

在 UnifabriX 的示例中,不仅节省了 100 万美元的资本支出,还实现了 150 万美元的总拥有成本收益。

来源:BLOCKS & FILES

0赞

好文章,需要你的鼓励

2025

01/20

09:45

分享

点赞

邮件订阅