戴尔公司产品营销高级副总裁Varun Chhabra表示,这些公告代表着“我们大规模扩展了和AMD的合作伙伴关系”。
PowerEdge XE7745专为企业级工作负载而设计,在4U风冷机箱中支持多达8个双宽或16个单宽基于外围组件互连Express的GPU和AMD EPYC处理器。内部GPU插槽与8个额外的PCIe 5.0插槽匹配,用于网络连接。
PCIe 5.0的数据传输速率比前代产品高得多,带宽是PCIe 4.0的2倍,每通道传输速度高达32千兆(即每秒信号转换次数)。XE7745将于1月开始在全球上市。
开放式机箱
新款PowerEdge R6725和R7725服务器针对可扩展性进行了优化,采用数据中心模块化硬件系统机箱设计,可实现增强的空气冷却和双500瓦CPU。戴尔表示,R7725的性能提高了66%,堆栈顶部效率提高了33%。DCMHS是一种标准化、模块化的方法,在开放计算项目(Open Compute Project)下设计和构建数据中心基础设施。
戴尔服务器和网络产品高级副总裁Arunkumar Narayanan表示:“我们采用DCM的设计打造了全新的机箱,从而增强了我们的空气冷却能力,每个CPU可容纳192个核心,每个CPU可容纳500兆瓦的CPU,从而实现无与伦比的功率和效率。我们将凭借2U容量、500瓦功率的空气冷却能力处于行业领先地位。”
根据戴尔的分析,这三个平台最多支持新增50%的核心,每个核心的性能最多可提高37%。这些平台将多达7台5年前的服务器整合为一台,将CPU功耗降低65%,可以使用戴尔的Integrated Dell Remote Access Controller进行远程监控、管理和更新,而且是独立于操作系统运行的,即使在服务器关闭时也可以进行远程管理。
基于第五代EPYC处理器的PowerEdge R6715服务器和R7715服务器比上一代更快,内存容量翻了一番,支持紧凑型1U和2U机箱配置24个双列直插式内存模块,计划于11月上市。
支持Hugging Face的AI Factory
戴尔还在增强了在3月份推出的AI Factory,这是一款用于训练、调整和运行AI模型的“端到端的AI企业解决方案”,结合采用了Nvidia GPU与戴尔的计算、存储、客户端设备、软件产品以及专业服务。
戴尔表示,使用带有AMD Instinct MI300X加速器的PowerEdge XE9680服务器的全新生成式AI功能可以简化AI部署、增强安全性、实现可扩展和模块化架构,并将价值实现时间缩短高达86%。这项配置可作为Hugging Face AI平台上的Dell Enterprise Hub使用,为部署Llama和Mixtral等模型提供自定义容器和脚本。
Narayanan表示,XC9680曾是“戴尔历史上最成功的产品发布”。“这款产品为我们带来了超过100亿美金的收入。现在,我们将推出下一代产品。”
这个容器化的模型经过优化,可以提高基于模型和服务器的推理性能,并利用了Hugging Face Text Generation Inference,一种旨在高效服务和扩展大型语言模型的推理框架。戴尔扩展了生成式AI专业服务以支持AMD环境。
Chhabra表示:“我们与AMD和Hugging Face展开密切合作,让客户能够轻松地在利用AMD MI300加速器的PowerEdge XC9680基础设施上部署Llama和Mixtral等高级模型。此次合作将提供定制的容器、脚本和专有技术资源,让客户可以放心地在Hugging Face平台上部署最流行的开源AI模型,并且知道它已经过戴尔、AMD和Hugging Face的测试。”
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。