边缘端的传感器和连接设备的数量每天都在以指数级速度持续增长。连接数字计算设备的模拟电子传感器使系统能够获得态势感知并优化性能,从而实现高生产力和效率。有多种方法可以应对边缘端产生的传感器数据激增带来的处理挑战:
分布式计算的混合方法可以通过在边缘端使用可扩展、高效且低功耗的自适应计算平台来实现,这种平台可以无缝连接到云端以传输双向数据。为了让用户快速开始设计之旅,整个 AMD Kria™ 入门套件产品组合(包括其 Kria SOM)均已通过认证,可以运行目前最普遍的物联网管理系统——AWS IoT Greengrass 和 Azure IoT Edge。
AMD Kria 入门套件产品组合包括开箱即用的开发者平台,可用于设计视觉 AI、机器人和工业、电机控制和 DSP 应用。AMD Kria 入门套件令没有 FPGA 专业知识的嵌入式软件开发人员也能轻松使用 Kria K26 SOM 开始打造独特的边缘应用和解决方案,以实现批量生产部署。配备 Kria SOM 的异构计算能以低时延、低功耗和确定性满足边缘计算要求,同时承担云端和边缘之间分布的传感器融合和 AI。通过 AWS IoT Greengrass 和 Azure IoT Edge 认证,使用 AMD 启动设计从未如此简单。

什么是物联网管理系统?它们为何很重要?
在典型的部署中,会有多个边缘设备与同云端进行通信的传感器相连。物联网管理系统允许用户注册这些边缘设备,以建立与云端的通信、创建群组、收集数据、推送更新、与其他边缘设备进行本地通信,同时将安全放在首位!
AWS IoT Greengrass 是一种开源的 IoT 边缘运行时和云服务,可帮助您在设备上构建、部署和管理 IoT 应用。AWS IoT Greengrass 使您的设备能够在更靠近数据生成的位置收集和分析数据,自主响应本地事件,并与本地网络上的其他设备安全通信。Greengrass 设备还能与 AWS IoT Core 进行私密通信并将 IoT 数据导出至 AWS 云。
Azure 提供的 IoT Edge 是一种以设备为重的运行时,支持您部署、运行和监控容器化 Linux 工作负载。Azure IoT Edge 是 Azure IoT 中心的一项功能,使您能从云端扩展和管理 IoT 解决方案。Azure IoT Edge 可帮助您将云端的分析能力带到更接近您的设备的位置,从而获得更出色的商业洞察并实现离线决策。
开始使用 AMD Kria 入门套件:
Kria SOM 的设计充分考虑了软件工程师的需求,提供了熟悉的设计环境,无需 FPGA 编程经验。它们由 Kria 入门套件支持,这些套件是低成本的开箱即用开发平台,经过认证,可与 AWS IoT Greengrass 和 Azure IoT Edge 配合使用。使用 AMD 产品启动开发,实现跨云端和边缘的分布式计算优势,从未如此简单。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。