作者:MARIA DEUTSCHER
更新时间:美国东部时间2024年5月30日16:43
科技行业最大的八家企业正在联手发起UALink Promoter Group,今天让我们来详细介绍这项新的人工智能硬件计划。
该项目致力于开发一种行业标准方法,将图形处理单元等人工智能芯片连接在一起。该计划的支持者表示,其目标是简化包含大量芯片的人工智能集群的组装。另外一个目标是提高基础设施的可扩展性。
UALink Promoter Group得到了芯片制造商英特尔、AMD和Broadcom的支持。云计算三巨头中的两家——微软和谷歌,以及Meta、思科和慧与也参与其中。它衬托出英伟达在GPU领域的领导地位,所有的系统都围绕着这些芯片。
该组织计划在第三季度成立一个正式的行业联盟来监督开发工作。UALink Consortium(该机构的名称)将在该季度晚些时候发布其人工智能互联技术的首轮迭代版本。参与该计划的公司将可以使用该规范。
先进的人工智能模型通常不是使用一个而是多个处理器进行训练。每个处理器运行正在开发的神经网络的独立副本,并用训练数据集中的一小部分数据对其进行训练。为了完成开发过程,这些芯片需要同步各自的神经网络副本,这就需要有一个渠道让这些芯片可以相互交换数据。
这正是UALink Consortium计划中的互联所要满足的要求。据该组织称,这项技术将使在单个集群中连接多达1024个人工智能加速器成为可能。此外,UALink 还能将这些集群连接到网络交换机,后者可以帮助优化各个处理器之间的数据流量。
该联盟表示,正在开发的功能之一是促进“加速器所附内存之间的直接加载和存储”。促进对人工智能芯片内存的直接访问是加速机器学习应用的一种方式。英伟达在其数据中心显卡上采用的GPUDirect也是此类技术。
通常情况下,从一个GPU传输到另一个GPU的数据在到达目的地之前要经过几个中转站。特别是,信息必须经过显卡所在服务器的中央处理器。英伟达的GPUDirect技术可以绕过中央处理器,让数据更快地到达目的地,从而加快处理速度。
UALink Consortium至少是过去五年中成立的第三个专注于人工智能芯片的行业组织。
人工智能集群不仅包括机器学习加速器,还包括执行各种支持任务的CPU。2019年,英特尔发布了一种名为CXL的互连技术,可以将人工智能加速器与CPU连接起来。它还成立了一个行业联盟,促进该标准的开发和采用。
CXL是PCIe互连的定制版本,后者广泛用于服务器组件的连接。英特尔对后者的技术进行了修改,针对人工智能进行了多项优化。其中一项优化允许人工智能集群中相互连接的CPU和GPU互相共享内存,从而能够更高效地交换数据。
去年,英特尔与Arm以及其他几家芯片制造商合作,成立了一个名为UXL基金会(UXL Foundation)的人工智能软件联盟。该组织的目标是简化可在多种类型机器学习加速器上运行的人工智能应用的开发。为此,UXL基金会正在基于oneAPI进行开发,oneAPI是一个用于构建多处理器软件的工具包,最初由英特尔开发。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。