2021年,一组研究人员开始量化人工智能伦理话题的热度(https://www.computer.org/csdl/magazine/co/2021/01/09321834/1qmbkXCazy8)。他们在Google Scholar上搜索人工智能和伦理的参考文献。他们发现这一领域存在显著增长。在1985年至2018年的30多年里,他们发现了275篇专注于人工智能伦理的学术文章。而仅2019年一年,就发表了334篇相关文章,比过去34年的总和还要多。2020年,又增加了342篇文章。
对人工智能伦理的研究呈爆炸式增长,其中大部分集中在构建人工智能模型的指导方针上。现在,基于人工智能的工具向公众广泛提供。这让学校、企业和个人不得不弄清楚如何以安全、无偏见和准确的方式合乎道德地使用人工智能。
IEEE会员Sukanya Mandal指出,许多公众尚未充分了解或准备好以完全负责任的方式使用AI工具,他们对隐私、偏见、透明度和问责等潜在问题缺乏认识。
幻觉和不准确:人工智能用户最大的陷阱
由于它们的构建方式,大多数生成的人工智能模型都容易产生幻觉。他们只是捏造事实,看似权威的结果给人一种自信的感觉。这对用户来说是一个风险,他们可能会收到虚假信息。在美国,使用生成人工智能的律师在试图使用聊天机器人起草法律文件时艰难地吸取了这一教训,却发现人工智能编造了他们在辩论中引用的不存在的案例作为先例。
IEEE主席Tom Coughlin表示:“人工智能可能并不总是准确的,因此需要检查其信息。”
我们能相信人工智能做出的决定吗?
人工智能模型是根据大量数据进行训练的,有时它们会根据人类难以理解的极其复杂的数学函数做出决策(https://transmitter.ieee.org/why-we-need-explainable-ai/)。用户通常不知道人工智能为什么做出了该决定。
Mandal说:“许多人工智能算法都是决策不透明的‘黑匣子’。但特别是在医疗保健、法律决策、金融和招聘等高风险领域,无法解释的人工智能决策是不可接受的,会削弱问责制。如果人工智能拒绝某人贷款或工作,一定存在可以理解的原因。”
如果我们过于信任AI,会发生什么?
由于人工智能模型是在如此大的数据集上训练的,它们可能会诱使用户产生虚假的信心,导致他们不经思索地接受决策。
在最近一项针对全球技术领导者的调查“The Impact of Technology in 2024 and Beyond: an IEEE Global Study”中,59%的受访者认为“不准确和过度依赖人工智能”是他们组织在使用生成人工智能时最担心的问题之一。
为什么知道哪些数据用于训练人工智能模型很重要?
想象一下:一个人工智能模型被用来筛选求职者。它根据前几年收集的数据将简历转发给招聘经理,并接受培训以确定最有可能得到这份工作的人。除此之外,该行业传统上一直由男性主导。人工智能可以学会识别女性的名字,从而自动排除这些申请者,这不是基于她们的工作能力,而是基于她们的性别。
这种算法偏差可以也确实存在于人工智能训练数据中,这使得用户了解模型是如何训练的非常重要。
Mandal说:“确保无偏见的数据是人工智能开发生命周期和持续过程中的共同责任。首先,那些获取数据的人要意识到偏见的风险,并使用不同的、有代表性的数据集。人工智能开发人员应该积极分析数据集的偏见。人工智能部署人员应该监控现实世界的偏见表现。当人工智能遇到新数据时,需要进行持续的测试和调整。独立审计也很有价值。任何人都不能只把减轻偏见的工作交给过程中的其他人。”
你应该告诉人们何时使用人工智能吗?
披露正在成为人工智能使用的一个关键原则。例如,当人工智能在医疗保健领域做出决定时,应该告诉患者。社交媒体网站还要求创作者披露人工智能何时被用于制作或修改视频。
IEEE高级会员Cristiane Agra Pimentel表示:“人工智能的道德使用取决于正确处理信息,包括来源引用和遵守现有指南。一些出版物现在允许人工智能的使用,前提是作者列举了引用的人工智能及其使用日期。”
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。