Nvidia今天透露,已经收购了Run:ai,一家开发优化显卡集群性能软件的初创公司。
此次收购交易的条款并未披露。TechCrunch援引两位知情人士的话报道称,此次交易对Run:ai的估值为7亿美金,这几乎是这家总部位于特拉维夫的初创公司在收购之前筹集的资金金额的6倍。
Run:ai的正式名称为Runai Labs Ltd,提供的软件主要用于加速配备了GPU的服务器集群。据该公司称,由其技术支持的GPU环境可以运行的AI工作负载比其他方式要多出10倍,而且它是通过修复几个经常影响GPU驱动的服务器的常见处理效率低下问题来提高AI性能的。
Run:ai解决的第一个问题,源于AI模型通常使用多个显卡进行训练。为了将神经网络分布在GPU集群上,开发人员会将其分成多个软件片段,并在不同的芯片上训练每个片段。这些AI片段必须在训练过程中定期相互交换数据,这可能会导致性能问题。
如果AI片段必须与当前未运行的神经网络的不同部分交换数据,则必须暂停处理,直到后一个模块上线,由此产生的延迟会减慢AI训练的工作流程。Run:ai可以确保促进数据交换所需的所有AI片段同时在线,从而消除不必要的处理延迟。
Run:ai的软件还避免了所谓的内存冲突。在这种情况下,两个AI工作负载会尝试同时使用GPU内存的同一部分。GPU会自动解决此类错误,但故障排除过程需要时间。在AI训练过程中,修复内存冲突所花费的时间会显着增加并减慢处理速度。
在同一GPU集群上运行多个AI工作负载还可能导致其他类型的瓶颈。如果其中一个工作负载需要的硬件超出预期,那么它可能会使用分配给其他应用的基础设施资源并放慢这些应用的速度。Run:ai提供的功能可以确保每个AI模型都获得足够的硬件资源,在没有延迟的情况下完成分配的任务。
Nvidia副总裁、DGX云部门总经理Alexis Bjorlin在一篇博客文章中详细介绍了这一点,他说:“该公司在Kubernetes上构建了一个开放平台,这是现代AI和云基础设施的编排层,支持所有主流的Kubernetes变体,并与第三方AI工具和框架进行了集成。”
Run:ai主要销售核心基础设施优化的平台以及其他两种软件工具。首先是Run:ai Scheduler,它提供了一个为开发团队和AI项目分配硬件资源的接口,其次是Run:ai Dev,可以帮助工程师更快地设置用于训练神经网络的编码工具。
Nvidia已经在自己的多款产品中附带了Run:ai的软件,包括Nvidia Enterprise,是Nvidia为自己数据中心GPU提供的一套开发工具,以及DGX系列AI优化型设备。Run:ai也可在DGX Cloud上使用,并且通过该产品,企业可以访问主流公有云中的Nvidia AI设备。
Bjorlin表示,“在可预见的未来”,Nvidia将继续在当前定价模式下提供Run:ai的工具,与此同时,Nvidia将发布该软件的增强功能,重点关注有助于优化DGX云环境的功能。
Bjorlin详细介绍道:“客户可以期望他们将受益于更好的GPU利用率、改进的GPU基础设施管理以及开放架构带来的更高灵活性。”
好文章,需要你的鼓励
中国生数科技旗下AI产品Vidu发布新版本更新,推出"参考图像生成"功能,用户可上传最多7张参考图片,通过AI模型的语义理解技术将多张图像合成为高度一致的新图像。该功能支持快速编辑照片、替换物体、调整光照等操作,为摄影师、营销人员提供便捷的AI图像编辑工具,在保持视觉一致性方面与谷歌等竞品形成竞争。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
芯片初创公司SiFive推出四款专为运行人工智能模型优化的CPU核心。这些基于开源RISC-V架构的新核心增加了矢量扩展功能,能够更高效地并行处理多个数据点,显著加速AI模型运算。其中X160和X180是主打产品,具备加速卷积运算的矢量处理功能,可用于工业设备、消费电子和数据中心。公司预计客户将于2026年第二季度开始基于新核心设计生产芯片。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。