Nvidia今天透露,已经收购了Run:ai,一家开发优化显卡集群性能软件的初创公司。
此次收购交易的条款并未披露。TechCrunch援引两位知情人士的话报道称,此次交易对Run:ai的估值为7亿美金,这几乎是这家总部位于特拉维夫的初创公司在收购之前筹集的资金金额的6倍。
Run:ai的正式名称为Runai Labs Ltd,提供的软件主要用于加速配备了GPU的服务器集群。据该公司称,由其技术支持的GPU环境可以运行的AI工作负载比其他方式要多出10倍,而且它是通过修复几个经常影响GPU驱动的服务器的常见处理效率低下问题来提高AI性能的。
Run:ai解决的第一个问题,源于AI模型通常使用多个显卡进行训练。为了将神经网络分布在GPU集群上,开发人员会将其分成多个软件片段,并在不同的芯片上训练每个片段。这些AI片段必须在训练过程中定期相互交换数据,这可能会导致性能问题。
如果AI片段必须与当前未运行的神经网络的不同部分交换数据,则必须暂停处理,直到后一个模块上线,由此产生的延迟会减慢AI训练的工作流程。Run:ai可以确保促进数据交换所需的所有AI片段同时在线,从而消除不必要的处理延迟。
Run:ai的软件还避免了所谓的内存冲突。在这种情况下,两个AI工作负载会尝试同时使用GPU内存的同一部分。GPU会自动解决此类错误,但故障排除过程需要时间。在AI训练过程中,修复内存冲突所花费的时间会显着增加并减慢处理速度。
在同一GPU集群上运行多个AI工作负载还可能导致其他类型的瓶颈。如果其中一个工作负载需要的硬件超出预期,那么它可能会使用分配给其他应用的基础设施资源并放慢这些应用的速度。Run:ai提供的功能可以确保每个AI模型都获得足够的硬件资源,在没有延迟的情况下完成分配的任务。
Nvidia副总裁、DGX云部门总经理Alexis Bjorlin在一篇博客文章中详细介绍了这一点,他说:“该公司在Kubernetes上构建了一个开放平台,这是现代AI和云基础设施的编排层,支持所有主流的Kubernetes变体,并与第三方AI工具和框架进行了集成。”
Run:ai主要销售核心基础设施优化的平台以及其他两种软件工具。首先是Run:ai Scheduler,它提供了一个为开发团队和AI项目分配硬件资源的接口,其次是Run:ai Dev,可以帮助工程师更快地设置用于训练神经网络的编码工具。
Nvidia已经在自己的多款产品中附带了Run:ai的软件,包括Nvidia Enterprise,是Nvidia为自己数据中心GPU提供的一套开发工具,以及DGX系列AI优化型设备。Run:ai也可在DGX Cloud上使用,并且通过该产品,企业可以访问主流公有云中的Nvidia AI设备。
Bjorlin表示,“在可预见的未来”,Nvidia将继续在当前定价模式下提供Run:ai的工具,与此同时,Nvidia将发布该软件的增强功能,重点关注有助于优化DGX云环境的功能。
Bjorlin详细介绍道:“客户可以期望他们将受益于更好的GPU利用率、改进的GPU基础设施管理以及开放架构带来的更高灵活性。”
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。