英特尔近日宣布FPGA业务独立,该业务将销售用于从蜂窝塔到机器人等系统的可重新配置芯片。
英特尔FPGA业务的根源可以追溯到一家名为Altera的芯片制造商,后者成立于1983年。英特尔在2015年以167亿美金收购了这家公司,后来将其并入英特尔的数据中心部门。去年,英特尔宣布计划把Altera从数据中心部门剥离出来,成为一个独立的业务部门。
处理器中的晶体管被组织成模块,每个模块执行一组不同的任务。一个模块可能会被优化以执行矩阵乘法,这是机器学习模型用来处理数据的数学计算,反过来,相邻的晶体管簇可能主要专注于加密网络流量。
大多数处理器不允许用户更改晶体管集群执行什么任务以及执行方式。英特尔新独立的Altera部门,销售FPGA芯片则支持定制。企业可以调整FGPA的设计,以提高运行目标工作负载的速度或者降低功耗。
例如,一个开发AI驱动的智能家电的硬件团队,可以对FPGA中大部分的电路进行优化,用于执行矩阵乘法。处理器拥有的AI优化电路越多,运行机器学习模型的速度也就越快。FGPA不仅能够定制板载计算模块,还能够定制管理这些模块之间数据流的互连方式。
Altera是由首席执行官Sandra Rivera领导的,她曾经是英特尔数据中心部门的负责人。在今天的网络会议中Rivera表示,Altera的潜在市场规模将在几年内达到550亿美金,此外她还提供了关于Altera产品开发路线图的最新信息。
Rivera预览了Agilex 3,这是即将推出的FPGA系列,适用于需要有限计算能力的低功耗设备。Altera预计,这些芯片可用于云、通信和边缘计算环境,将在今年晚些时候分享有关该产品系列的更多细节。
在不久的将来,Altera将推出中端FGPA系列名为Agilex 5系列。英特尔表示,这个产品系列是基于10纳米工艺的,每瓦性能比使用7纳米技术制造的竞争对手产品高出60%。
另一个卖点是Agilex 5配备了数字信号处理器(DSP),使用AI优化的电路来加速计算。DSP是一种专用处理器,专为压缩多媒体文件和消除其中可能包含的任何传输错误等任务而开发。Agilex 5还包括了其他计算模式,例如基于Arm设计的CPU核心。
英特尔这次还提供了关于Altera此前公布的Agilex 7和Agilex 9产品线的更新信息,并表示,前一个芯片系列已经“投入生产”,而后者现已经投入量产。
Agilex 7针对数据中心、网络和国防系统的使用进行了优化,Agilex 9则面向雷达和军事航空航天用例,两条产品线都针对混合信号处理或编码为1和0的标准数据以及雷达读数等其他类型信号的任务处理进行了优化。
Rivera表示:“客户要应对日益复杂的技术挑战,努力从竞争对手中脱颖而出并加快实现价值的速度,在这个背景下,我们有机会重振FPGA市场。”
Altera的主要竞争对手是AMD,后者在2022年以500亿美金收购了Xilinx,进入FPGA市场,这笔交易也是半导体行业有史以来规模最大的收购。根据IDC的估计,由于这次收购使得AMD在FPGA市场占到了55%的份额,Altera的份额为30%多。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。