几乎在你按下发送按钮的瞬间,大模型便以惊人的速度完成了回复的生成。这一次,Groq大模型以每秒500个token,彻底颠覆了GPT-4的40 tok/s的速度纪录!
Groq之所以“出圈”,缘于其惊人的速度,自称“史上最快大模型”!而让其冠绝大模型圈子的响应速度,来自驱动模型的新型AI芯片——LPU(Language Processing Units)。
Groq家的LPU“不走寻常路”
LPU旨在克服两大大语言模型(LLM)的瓶颈——计算密度和内存带宽。与GPU和CPU相比,LPU在处理LLM方面具有更大的计算能力。这减少了每个单词计算所需的时间,使文本序列能够被更快地生成。此外,消除外部内存瓶颈使得LPU推理引擎能够在性能上实现数量级的提升。
与专为图形渲染而设计的GPU不同,LPU采用了一种全新的架构,旨在为AI计算提供确定性的性能。
GPU采用的是SIMD(单指令多数据),而LPU采取了更为直线化的方法,避免了复杂的调度硬件需求。这种设计允许每个时钟周期都被有效利用,确保了一致的延迟和吞吐量。
简单来说,如果把GPU比作一支精英运动队,每个成员都擅长处理多任务,但需要复杂的协调才能发挥最佳效能,那么LPU就像是一支由单一项目专家组成的队伍,每个成员都在他们最擅长的领域中以最直接的方式完成任务。
对于开发者而言,这意味着性能可以被精确预测和优化,这在实时AI应用中至关重要。
在能效方面,LPU也展现出其优势。通过减少管理多线程的开销并避免核心的低效利用,LPU能够以更低的能耗完成更多的计算任务。
Groq还允许多个TSP无缝连接,避开了GPU集群中常见的瓶颈问题,实现了极高的可扩展性。这意味着随着更多LPU的加入,性能可以线性扩展,简化了大规模AI模型的硬件需求,使开发者能够更容易地扩展他们的应用,而无需重新架构系统。
举例来说,如果把GPU集群比作一座由多条桥梁连接的岛屿,尽管可以通过这些桥梁访问更多的资源,但桥梁的容量限制了性能的提升。而LPU则像是设计了一种新型的交通系统,通过允许多个处理单元无缝连接,避免了传统瓶颈问题。这意味着随着更多LPU的加入,性能可以线性扩展,大大简化了大规模AI模型的硬件需求,使得开发者能够更容易地扩展他们的应用,而无需重新架构整个系统。
快如闪电的Groq到底好不好用?
尽管LPU的创新举措令人瞠目,但对于通用大模型而言,好不好用才是关键。
我们对于chatGPT和Groq 提出了相同的需求,且没有经过二次对话。
不论内容正确与否,单从语言风格上看,从两款模型给出的反馈不难发现,Groq 的回复一板一眼有些生硬,很浓的“AI味”,而chatGPT则相对自然,对于人类语言(中文)习惯的“领悟”更加透彻。
接着我们又问了几乎同样的问题,它们的回答这这样的:
GPT的语言风格把“人情世故”吃的透透的,而Groq依旧是“AI味”浓厚。
能不能取代英伟达的GPU?
伴随着Groq极速狂飙的同时,出现了一票声音——英伟达的GPU是否已经落后了?
然而,速度并不是AI发展的唯一决定性因素。在讨论大型模型推理部署时,7B(70亿参数)模型的例子很能说明问题。
目前,部署这样一个模型大约需要14GB以上的内存。以此为基础,大概需要70个专用芯片,每个芯片对应一张计算卡。如果采用一种常见的配置,即一个4U服务器装载8张计算卡,那么部署一个7B模型就需要9台4U服务器,几乎占满了一个标准的服务器机柜。总共需要72个计算芯片,这样配置下的计算能力在FP16模式下达到了惊人的13.5P(PetaFLOPS),而在INT8模式下更是高达54P。
以英伟达的H100为例,其拥有80GB的高带宽内存,可以同时运行5个7B模型。在FP16模式下,经过稀疏化优化的H100的计算能力接近2P,在INT8模式下则接近4P。
一位国外的博主作了对比,结果显示:以INT8模式进行推理,使用Groq的方案需要9台服务器。而9台Groq服务器的成本远高于2台H100服务器。而Groq方案的成本超过160万美金,而H100服务器的成本为60万美金,这还未包括机架相关费用和电费开销。
对于更大的模型,如70B参数模型,使用INT8模式可能需要至少600张计算卡,接近80台服务器,成本更是天文数字。
事实上,于Groq的架构来讲,或需要建立在小内存,大算力上,让有限的被处理的内容对应着极高的算力,导致其速度非常快。
而对于部署推理能力的大模型,性价比最高的,依旧是英伟达的GPU。
好文章,需要你的鼓励
英国宠物慈善机构PDSA数据显示,超过半数宠物主担心无法承担兽医费用。科技公司正通过AI和物联网技术解决这一市场需求。在伦敦兽医展上,多家初创公司展示了创新技术:AI for Pet利用视觉AI分析宠物眼部、皮肤等图像提供健康洞察;Sylvester.ai开发AI模型识别猫咪疼痛表情;VEA整合患者数据自动化诊断。此外,智能项圈等物联网设备可追踪宠物健康症状。这些技术有助于宠物主采取预防措施,降低兽医费用。
卡内基梅隆大学联合Adobe开发出革命性的NP-Edit技术,首次实现无需训练数据对的AI图像编辑。该技术通过视觉语言模型的语言反馈指导和分布匹配蒸馏的质量保障,让AI仅用4步就能完成传统50步的编辑任务,在保持高质量的同时大幅提升处理速度,为图像编辑技术的普及应用开辟了全新道路。
北欧国家启动统一人工智能产业计划,旨在通过合作在全球舞台上竞争,获得微软和谷歌支持。10月成立的新北欧AI中心获得350万英镑初始预算,但谷歌和微软是唯一提供资金支持的科技公司,具体金额保密。该中心将开发生成式AI系统并建设应用AI服务的系统。北欧教育部长承诺追加资金开发大型北欧语言生成AI模型。尽管资金有限,但北欧国家希望通过联合力量在AI竞赛中提升地位。
复旦大学团队突破AI人脸生成"复制粘贴"痛点,开发WithAnyone模型解决传统AI要么完全复制参考图像、要么身份差异过大的问题。通过MultiID-2M大规模数据集和创新训练策略,实现保持身份一致性的同时允许自然变化,为AI图像生成技术树立新标杆。