HPE正在调整自己的AI产品组合,近日宣布推出了一套新的混合云产品,用于机器学习开发、数据分析、AI优化的文件存储以及推理服务的调优。
HPE表示,这些服务将通过一个平台提供,该平台结合了开源软件和基础设施,专为AI模型训练的数据需求而设计。
HPE计算部门总经理Neil MacDonald表示:“企业可以接受和探索的速度,以及他们对如何对部分业务运营进行转型的实验,是至关重要的。我们正在提供一种开箱即用的推理解决方案,使客户能够采用预先训练好的模型并将其部署到环境中以转型他们的企业运营,并且能够比以前更快速地完成这一任务。”
超级计算的优势
HPE表示将利用GreenLake平台提供以AI为中心的功能组合,包括数据优先管道、生命周期管理软件、高性能互连、以及对第三方扩展的开放生态系统的支持。HPE表示,通过2019年收购Cray Research所获得的超级计算专业知识,将让HPE在这个市场中占据优势。
HPE公司人工智能首席产品官Evan Sparks表示:“你的DNA中需要具备超级计算能力,并且能够扩展到大规模计算中,HPE已经在许多其他领域解决了这些问题。
HPE在本周举行的Discover Barcelona大会上宣布与Nvidia扩大合作,提供由Nvidia构建的生成式AI专用计算平台,该平台将针对那些使用私有数据集和自定义软件工具的AI模型的训练和调整进行优化。
该平台基于HPE ProLiant DL380a硬件,预配置了Nvidia L40S GPU、BlueField-3数据处理单元和Spectrum-X以太网网络,其规模可调优一个配置16台服务器、64个GPU以及具有700亿个参数的Llama-2模型。它将配备增强型HPE Machine Learning Development Environment,具有用于原型设计和测试的生成式AI工作室功能,以及具有GPU感知功能的HPE Ezmeral软件。
此外还包括了Nvidia的企业运输局软件堆栈,用于安全且可管理的AI开发和部署,以及用于模型定制和部署的Nvidia NeMo云原生框架。
新型应用
Nvidia公司企业计算副总裁Manuvir Das表示:“生成式AI催生了一种新型的企业应用,这种应用使用AI嵌入模型将数据仓库中的数据转换为嵌入,这是信息含义的一种表示。然后,你使用矢量数据库来存储这些嵌入,以便可以与数据进行对话,找到库中最能代表答案的所有信息,并将其转化为提示内容以提供给大型语言模型。”
以AI为中心的基础设施将包括用于文件存储的GreenLake,这是一个针对模型训练和调整进行微调的全闪存非结构化数据平台。该平台的性能密度是现有GreenLake文件存储的2倍,吞吐量和与Nvidia Quantum-2 InfiniBand网络平台的连接性是现有GreenLake文件存储的4倍。
HPE Machine Learning Development Environment现在也已经作为一项管理服务用语模型训练了。HPE表示,该服务降低了模型开发的操作复杂性和人员需求,并具有用于原型设计和测试的生成式AI专有工作室功能。
用于软件容器的HPE Ezmeral平台得到了增强,现在支持针对GPU优化的混合数据湖仓,并支持NFS文件系统以及AWS S3兼容的对象存储。此外,Machine Learning Development Environment集成了分析软件,能够提供增强的模型训练和调整功能。
HPE Ezmeral软件总经理Mohan Rajagopalan表示:“我们正在努力打造单一的管理平台体验,以最大限度地利用和管理你的数据,无论这些数据位于何处。”
这款增强的产品针对跨工作负载的Nvidia GPU分配进行了优化,并提供了对第三方集成的访问,包括用于数据记录的开源Whylogs以及用于GPU加速查询的Voltron Data框架。
HPE还表示,HPE的服务部门将提供广泛的咨询、培训和部署服务,并由位于西班牙、美国、保加利亚、印度和突尼斯的人工智能和数据中心提供支持。从明年第一季度客户可以开始订购这些生成式AI产品和服务。
好文章,需要你的鼓励
这项研究提出了HoPE(混合位置编码),一种针对视觉语言模型的新型位置编码技术,专门解决长视频理解的挑战。传统位置编码技术在处理长视频时表现不佳,HoPE通过两个创新解决了这一问题:混合频率分配策略(为空间信息分配高频,时间维度使用零频率)和动态时间缩放机制(根据视频速度灵活调整时间编码)。实验证明,HoPE在长视频理解和检索任务上分别提升了8.35%和22.23%,为AI更准确理解长视频内容开辟了新途径。
东京大学研究团队推出MangaVQA基准和MangaLMM模型,专门用于评估和提升AI对日本漫画的理解能力。MangaVQA由526个高质量手动创建的问答对组成,用于评估AI系统对漫画内容的深入理解;MangaOCR则专注于漫画页内文本识别。基于这两个基准,研究团队从开源多模态模型Qwen2.5-VL微调出MangaLMM,能同时处理文本识别和内容理解任务。实验显示,即使是GPT-4o等顶尖商业模型在处理漫画的独特复杂性时也面临挑战,而专门训练的MangaLMM表现出色。
这项研究由ISTA和谷歌研究院联合开发的"影响力蒸馏"方法,通过利用二阶信息为训练样本分配最优权重,实现了大语言模型训练数据的高效选择。该方法在数学上有坚实理论支持,并创新性地引入"地标"近似技术,仅需计算少量样本的精确影响力,再高效传播到其他样本,大幅降低计算成本。实验证明,该方法在多种模型和任务上均优于或匹配现有技术,同时实现了高达3.5倍的速度提升,为大模型训练开辟了更高效的路径。
来自哈佛大学等顶尖学府的研究团队在这篇论文中挑战了传统观念,认为Token压缩不仅仅是提高AI模型运行效率的工具,更应成为生成式AI模型设计的核心原则。研究表明,精心设计的Token压缩策略可以促进多模态深度整合、减轻AI"幻觉"问题、增强处理长序列输入的能力,并提高训练稳定性。论文详细分析了现有方法的局限性,并提出了算法创新、强化学习指导和硬件协同设计等未来研究方向。