HPE正在调整自己的AI产品组合,近日宣布推出了一套新的混合云产品,用于机器学习开发、数据分析、AI优化的文件存储以及推理服务的调优。

HPE表示,这些服务将通过一个平台提供,该平台结合了开源软件和基础设施,专为AI模型训练的数据需求而设计。
HPE计算部门总经理Neil MacDonald表示:“企业可以接受和探索的速度,以及他们对如何对部分业务运营进行转型的实验,是至关重要的。我们正在提供一种开箱即用的推理解决方案,使客户能够采用预先训练好的模型并将其部署到环境中以转型他们的企业运营,并且能够比以前更快速地完成这一任务。”
超级计算的优势
HPE表示将利用GreenLake平台提供以AI为中心的功能组合,包括数据优先管道、生命周期管理软件、高性能互连、以及对第三方扩展的开放生态系统的支持。HPE表示,通过2019年收购Cray Research所获得的超级计算专业知识,将让HPE在这个市场中占据优势。
HPE公司人工智能首席产品官Evan Sparks表示:“你的DNA中需要具备超级计算能力,并且能够扩展到大规模计算中,HPE已经在许多其他领域解决了这些问题。
HPE在本周举行的Discover Barcelona大会上宣布与Nvidia扩大合作,提供由Nvidia构建的生成式AI专用计算平台,该平台将针对那些使用私有数据集和自定义软件工具的AI模型的训练和调整进行优化。
该平台基于HPE ProLiant DL380a硬件,预配置了Nvidia L40S GPU、BlueField-3数据处理单元和Spectrum-X以太网网络,其规模可调优一个配置16台服务器、64个GPU以及具有700亿个参数的Llama-2模型。它将配备增强型HPE Machine Learning Development Environment,具有用于原型设计和测试的生成式AI工作室功能,以及具有GPU感知功能的HPE Ezmeral软件。
此外还包括了Nvidia的企业运输局软件堆栈,用于安全且可管理的AI开发和部署,以及用于模型定制和部署的Nvidia NeMo云原生框架。
新型应用
Nvidia公司企业计算副总裁Manuvir Das表示:“生成式AI催生了一种新型的企业应用,这种应用使用AI嵌入模型将数据仓库中的数据转换为嵌入,这是信息含义的一种表示。然后,你使用矢量数据库来存储这些嵌入,以便可以与数据进行对话,找到库中最能代表答案的所有信息,并将其转化为提示内容以提供给大型语言模型。”
以AI为中心的基础设施将包括用于文件存储的GreenLake,这是一个针对模型训练和调整进行微调的全闪存非结构化数据平台。该平台的性能密度是现有GreenLake文件存储的2倍,吞吐量和与Nvidia Quantum-2 InfiniBand网络平台的连接性是现有GreenLake文件存储的4倍。
HPE Machine Learning Development Environment现在也已经作为一项管理服务用语模型训练了。HPE表示,该服务降低了模型开发的操作复杂性和人员需求,并具有用于原型设计和测试的生成式AI专有工作室功能。
用于软件容器的HPE Ezmeral平台得到了增强,现在支持针对GPU优化的混合数据湖仓,并支持NFS文件系统以及AWS S3兼容的对象存储。此外,Machine Learning Development Environment集成了分析软件,能够提供增强的模型训练和调整功能。
HPE Ezmeral软件总经理Mohan Rajagopalan表示:“我们正在努力打造单一的管理平台体验,以最大限度地利用和管理你的数据,无论这些数据位于何处。”
这款增强的产品针对跨工作负载的Nvidia GPU分配进行了优化,并提供了对第三方集成的访问,包括用于数据记录的开源Whylogs以及用于GPU加速查询的Voltron Data框架。
HPE还表示,HPE的服务部门将提供广泛的咨询、培训和部署服务,并由位于西班牙、美国、保加利亚、印度和突尼斯的人工智能和数据中心提供支持。从明年第一季度客户可以开始订购这些生成式AI产品和服务。
好文章,需要你的鼓励
北京大学研究团队开发出基于RRAM芯片的高精度模拟矩阵计算系统,通过将低精度模拟运算与迭代优化结合,突破了模拟计算的精度瓶颈。该系统在大规模MIMO通信测试中仅需2-3次迭代就达到数字处理器性能,吞吐量和能效分别提升10倍和3-5倍,为后摩尔时代计算架构提供了新方向。
普拉大学研究团队开发的BPMN助手系统利用大语言模型技术,通过创新的JSON中间表示方法,实现了自然语言到标准BPMN流程图的自动转换。该系统不仅在生成速度上比传统XML方法快一倍,在流程编辑成功率上也有显著提升,为降低业务流程建模的技术门槛提供了有效解决方案。
谷歌宣布已将约3万个生产软件包移植到Arm架构,计划全面转换以便在自研Axion芯片和x86处理器上运行工作负载。YouTube、Gmail和BigQuery等服务已在x86和Axion Arm CPU上运行。谷歌开发了名为CogniPort的AI工具协助迁移,成功率约30%。公司声称Axion服务器相比x86实例具有65%的性价比优势和60%的能效提升。
北京大学联合团队发布开源统一视频模型UniVid,首次实现AI同时理解和生成视频。该模型采用创新的温度模态对齐技术和金字塔反思机制,在权威测试中超越现有最佳系统,视频生成质量提升2.2%,问答准确率分别提升1.0%和3.3%。这项突破为视频AI应用开辟新前景。