Nvidia公司正在和位于多伦多的初创公司Xanadu Quantum Technologies展开合作,首次实现在超级计算机上运行量子计算模拟。

Nvidia在今天发布的一篇博文中表示,研究人员正在使用最新版本的Xanadu PennyLane在名为“Perlmutter”的超级计算机上模拟量子机器。PennyLane是一个名为“混合量子计算”的开源框架,也就是使用经典计算资源和量子处理器。研究人员将PennyLane与Nvidia cuQuantum软件开发套件结合起来,使其能够模拟由高性能GPU集群驱动的量子机器。
这种高性能是一项关键要求,因为美国能源部布鲁克海文国家实验室的Shinjae Yoo等研究人员表示,需要多达256个GPU才能模拟大约36个量子位——这是真正的量子机器所采用的特有的计算器,而且至关重要的是,这大约是研究人员目前可用量子位数量的两倍。
Nvidia表示,PennyLane的多节点版本将搭配cuQuantum SDK一起使用,以简化加速量子计算机大规模模拟的复杂工作。Yoo表示:“这甚至让我的实习生也可以运行一些最大规模的模拟,的确令人感到兴奋。”他的团队计划将有不少于6个项目将使用PennyLane。
Yoo的研究旨在推进高能物理和机器学习应用,而其他研究人员正在使用模拟量子计算机来扩展他们对化学和材料科学的理解。
量子计算机是一种实验型计算机,依赖于量子力学的特性,有望比经典计算机更为强大,尽管这仍然是一项尚未完全开发的新兴技术,而模拟运算则让研究人员能够在开发过程中开始探索他们的能力。
除了帮助研究人员之外,Xanadu公司还与劳斯莱斯汽车有限公司合作开发量子算法,用于设计更可持续的喷气发动机;与大众集团合作,为电动汽车设计更高效、更强大的电池。
除了Yoo的项目外,国家能源研究科学计算中心的Perlmutter超级计算机至少还在四个项目中利用PennyLane在模拟量子算机。NERSC量子计算项目的负责人Katherine Klymko 表示,研究人员正在使用量子模拟来研究对于传统计算机来说太大的分子复合物。Klymko说:“像PennyLane这样的工具是让他们扩展当前经典功能的关键,为最终在大型计算机上运行算法做好准备。”
Xanadu公司高级量子软件开发人员Lee O’Riordan表示,PennyLane和cuQuantum的结合使可模拟的量子位数量大幅增加成为可能,超出了之前所实现的任何水平。“当我们从2022年开始在单个GPU上使用cuQuantum的时候,我们就几乎全面实现了10倍的加速。我们希望在今年年底之前扩展到1000个节点,也就是4000个GPU,这可能意味着模拟超过40个量子位。”
O’Riordan相信,最终Nvidia cuQuantum和GPU可以帮助模拟相当于60多个量子位,分为30个量子位子电路,甚至更多。
Xanadu的团队仍在收集有关任何可能性的数据,但这项研究看起来很有希望,“根据我们基于样本的工作负载,我们看到的几乎都是线性扩展。”
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。