共有34种设计方案可供选择,如何开启机器学习之旅任君考量。
为了引导技术人员和工程师们积极尝试自家AI加速硬件,英特尔公司已经整合出一系列软件参考套件,宣称能减少在其芯片之上部署机器学习系统所需要的时间和资源。
如大家所想,这34种开源参考套件能够解决各种常见的AI/机器学习工作负载,包括支持聊天机器人和他生成式AI大语言模型,以及处理对象检测、语音生成和财务风险预测等更为普遍的任务类型。
英特尔指出,他们与埃森哲合作开发的这些参考套件均包含必要的模型代码、训练数据、库、oneAPI组件以及面向英特尔硬件的具体实现指令。根据英特尔方面的介绍,这些参考套件还将根据社区的反馈意见定期保持更新。
但这里需要澄清一点:这些套件似乎均为纯软件。需要由客户提供(内置英特尔芯片的)硬件,再配合给定的套件在其上构建AI/机器学习应用程序。
英特尔当然也做好了战斗准备,手中掌握着大量可运行此类AI应用程序的加速器和GPU,包括Habana Gaudi 2训练处理器、Ponte Vecchio GPU以及内置在英特尔Sapphire Rapids至强Scalable处理器当中的高级矩阵扩展加速器。
尽管一直在围绕生成式AI开展大规模宣传,但英特尔的加速器似乎始终没能像英伟达的GPU那样受到公众的广泛关注和使用。而好消息是,英伟达家的GPU被大量用于训练那些规模恐怖、知名度极高、疯狂吞噬GPU资源的大语言模型(各大主要云服务商也在主动争夺英伟达资源,采购数以万计的GPU和加速器),因此一定会有很多客户无法以合理的价格和供应量获取英伟达产品,这样英特尔也就有了占领市场份额的机会空间。
根据技术外媒体The Next Platform的报道,英伟达的H100 PCIe卡(这甚至还不是英伟达家最顶级的GPU版本)在eBay上的竞价已经高达4万美元。
因此,只要英特尔能够降低在其加速器上部署AI工作负载的障碍,那这位x86技术巨头应该有能力说服客户接受他们的部件,特别是那些更昂贵的旗舰产品。
当然,采取这种曲线对抗策略的不只有英特尔一家。英伟达在GPU加速的软件开发与商业化方面已经取得了巨大成功。去年,英伟达CFO Colette Kress就明确强调了此类订阅软件收入,将对推动GPU芯片巨头实现万亿级别收入的重要意义。
AMD也在积极推出自己的AI GPU和加速器产品。今年6月,AMD方面详细介绍了Instinct MI300 APU与GPU,这些产品将在HPC和AI/机器学习领域同英伟达展开正面竞争。除了新款芯片之外,这家芯片制造商还宣布与Hugging Face建立战略合作伙伴关系,由后者负责开发用于构建机器学习应用程序的工具,并针对AMD的Instinct GPU、Alveo FPGA、以及Epyc与Ryzen CPU对目前几种主流AI模型做出优化。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。