共有34种设计方案可供选择,如何开启机器学习之旅任君考量。
为了引导技术人员和工程师们积极尝试自家AI加速硬件,英特尔公司已经整合出一系列软件参考套件,宣称能减少在其芯片之上部署机器学习系统所需要的时间和资源。
如大家所想,这34种开源参考套件能够解决各种常见的AI/机器学习工作负载,包括支持聊天机器人和他生成式AI大语言模型,以及处理对象检测、语音生成和财务风险预测等更为普遍的任务类型。
英特尔指出,他们与埃森哲合作开发的这些参考套件均包含必要的模型代码、训练数据、库、oneAPI组件以及面向英特尔硬件的具体实现指令。根据英特尔方面的介绍,这些参考套件还将根据社区的反馈意见定期保持更新。
但这里需要澄清一点:这些套件似乎均为纯软件。需要由客户提供(内置英特尔芯片的)硬件,再配合给定的套件在其上构建AI/机器学习应用程序。
英特尔当然也做好了战斗准备,手中掌握着大量可运行此类AI应用程序的加速器和GPU,包括Habana Gaudi 2训练处理器、Ponte Vecchio GPU以及内置在英特尔Sapphire Rapids至强Scalable处理器当中的高级矩阵扩展加速器。
尽管一直在围绕生成式AI开展大规模宣传,但英特尔的加速器似乎始终没能像英伟达的GPU那样受到公众的广泛关注和使用。而好消息是,英伟达家的GPU被大量用于训练那些规模恐怖、知名度极高、疯狂吞噬GPU资源的大语言模型(各大主要云服务商也在主动争夺英伟达资源,采购数以万计的GPU和加速器),因此一定会有很多客户无法以合理的价格和供应量获取英伟达产品,这样英特尔也就有了占领市场份额的机会空间。
根据技术外媒体The Next Platform的报道,英伟达的H100 PCIe卡(这甚至还不是英伟达家最顶级的GPU版本)在eBay上的竞价已经高达4万美元。
因此,只要英特尔能够降低在其加速器上部署AI工作负载的障碍,那这位x86技术巨头应该有能力说服客户接受他们的部件,特别是那些更昂贵的旗舰产品。
当然,采取这种曲线对抗策略的不只有英特尔一家。英伟达在GPU加速的软件开发与商业化方面已经取得了巨大成功。去年,英伟达CFO Colette Kress就明确强调了此类订阅软件收入,将对推动GPU芯片巨头实现万亿级别收入的重要意义。
AMD也在积极推出自己的AI GPU和加速器产品。今年6月,AMD方面详细介绍了Instinct MI300 APU与GPU,这些产品将在HPC和AI/机器学习领域同英伟达展开正面竞争。除了新款芯片之外,这家芯片制造商还宣布与Hugging Face建立战略合作伙伴关系,由后者负责开发用于构建机器学习应用程序的工具,并针对AMD的Instinct GPU、Alveo FPGA、以及Epyc与Ryzen CPU对目前几种主流AI模型做出优化。
好文章,需要你的鼓励
智能网卡(SmartNIC)技术自2013年AWS首次应用以来,虽然获得了VMware、英特尔、AMD和英伟达等巨头支持,但市场表现平平。分析师指出,目前主要客户仍局限于服务提供商。然而,随着AI技术蓬勃发展,情况正在改变。英伟达、红帽等厂商在AI云架构中推荐使用DPU,认为其可优化推理工作负载并提升资源效率,AI革命有望真正推动智能网卡技术普及。
中科院团队开发的SimpleGVR系统革新了AI视频增强技术,通过直接在潜在空间处理和创新的分阶段训练策略,能够将AI生成的低分辨率视频高效提升至高清画质。该系统不仅提升分辨率,还能修正AI视频特有的颜色混合等问题,在多项指标上超越现有顶级方法,为AI视频生成领域提供了实用的解决方案。
YouTube为Premium会员推出AI生成的搜索轮播功能,可在购物和地点查询时显示相关视频序列。同时,此前仅限Premium用户的AI对话助手开始向美国普通用户开放,用户可通过"询问"按钮获得视频摘要和内容问答服务。该AI工具基于YouTube平台和网络信息运行,但准确性仍待观察。
浙江大学联合腾讯AI实验室提出KnowRL方法,通过在强化学习中集成事实性奖励机制,有效解决慢思维AI模型在推理过程中的幻觉问题。该方法在保持原有推理能力的同时,显著提升了模型的事实准确性,为构建更可靠的AI系统提供了新思路。