作者:DUNCAN RILEY
更新时间:美国东部时间2023年7月6日19:37
英伟达正在和英特尔合作,利用Intel Trust Domain Extensions和英特尔的可信服务“Amber项目”为英伟达H100 GPU提供扩展认证服务。“Amber项目”旨在帮助客户部署保密人工智能解决方案。
该消息是上周在旧金山的保密计算峰会(Confidential Computing Summit)上宣布的,今天英特尔系统架构和工程副总裁Anil Roa在一篇博文中提供了更多细节。
Roa认为,人工智能是我们这个时代决定性的工作负载,经常需要使用图形处理单元进行硬件加速,特别是要求苛刻的任务更是如此。这些人工智能工作负载经常处理敏感数据,由于隐私法规或出于安全考虑,需要采取强有力的安全措施。为此,保密计算运动已经出现,目标是在硬件加固的可信执行环境或TEE中运行,以此保护敏感数据和代码。
认证——在保密计算流程中,利益相关方提供加密验证凭据,证明其使用TEE的计划是真实的——对于在使用高度敏感数据的计算平台上建立信任至关重要。英特尔和英伟达的保密计算技术在中央处理单元和GPU上建立了独立的TEE。这给需要从两个不同服务中获得证明以验证CPU和GPU TEE可信度的客户带来了挑战。
通过这次宣布的合作,英特尔和英伟达意在为基于至强可扩展CPU(使用Intel Trust Domain Extensions和Nvidia H100 GPUs)的“保密人工智能”创建一个更加统一的认证解决方案。它将通过英特尔基于云的信任服务“Amber项目”来实现。
Amber项目于2022年5月份宣布之后,将于9月份开放试点,在云、边缘和内部环境中为企业提供可信的远程验证。该服务旨在满足日益增长的安全需求,它侧重于信任并通过基于服务的安全执行代码作为独立的可信授权运行。
通过此次合作,用户将能够从Nvidia Remote Attestation Service请求进行GPU认证,通过Amber项目请求进行CPU认证,或者向Amber提出单一请求,从一个服务中收集所需证据。Amber还将与NRAS整合,提供无缝的用户体验。
这次合作将依靠独立的CPU和基于GPU的TEE,通过英伟达驱动程序进行通信,在PCI Express连接上对数据进行加密。随着两家公司的合作,英伟达将为英特尔TDX Connect保密通信提供支持,并在CPU上的TEE和PCI Express连接设备之间共享内存。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。