常用的生物识别方法包括人脸识别、指纹识别、虹膜识别、步态识别等。其中,步态识别技术可以通过人的身体体型和行走姿态来辨识身份,它是目前远距离复杂场景下几乎唯一可用于身份识别的生物特征识别技术。银河水滴科技公司(以下简称为“银河水滴”)源自于中科院自动化所,是步态识别技术和产业的引领者。
步态识别面临着极具挑战的复杂环境——远距离、跨视角、跨着装、低照度、全天候,是极具挑战、但又极其重要的科技难题,是公认的当前视频大数据解析与应用的核心技术之一。由于其数据环境复杂,因而所需要处理的数据种类繁多。
为了在步态识别过程中通过深度学习方法处理视角、着装、携带物等多种行人特征的同时,保持所生成步态序列的不变性,银河水滴所需处理的数据量十分庞大,因而 AI 模型的训练数据吞吐量大、整体训练速度偏慢,亟需寻找更强大的 GPU 解决方案以更高效地从步态序列中提取更具鲁棒性的特征。
在步态识别 AI 模型训练中,需要通过 GPU 对大量数据进行传输与计算,NVIDIA DGX-1 所具有的高带宽可以大幅加速数据搬运的过程。DGX-1 是一款深度学习系统,专为实现高吞吐量和高互联带宽而构建,可极大提升神经网络训练性能。其系统核心组件是 8 个 NVIDIA V100 GPU,通过混合立体 NVLink 网络拓扑互联。内置的两块 CPU 以供启动、存储管理及深度学习框架协调之用。DGX-1 内嵌于 3 机架单位(3U)机箱中,集电源、冷却、网络、多系统互联及 SSD 文件系统缓存于一体,各组件相互协调,能够优化吞吐量和深度学习训练时间。通过部署 DGX-1 系统,银河水滴取得了比单独部署 GPU 更强大的性能。
在模型训练过程中银河水滴的技术人员发现,DGX-1 可以协助充分发挥 NVIDIA 数据中心 GPU 的潜力。银河水滴在对其模型进行每 100 次迭代时,此前通过单独采用配置了 8 块 NVIDIA V100 GPU 的服务器所需的训练时间是 2 分 40 秒,而在包含 8 块 V100 数据中心 GPU 的 DGX-1 系统中,这一过程则只需花费 1 分 40 秒,缩短了近 40% 的训练时间。
目前,银河水滴的步态识别技术已在全国各地几十个城市落地,在对步态识别 AI 模型进行训练时,部署了包含 8 块 NVIDIA V100 数据中心 GPU 的 NVIDIA DGX-1 系统,通过强劲算力处理多阶段、多种类、多用途的大量数据,加速了银河水滴步态识别技术的应用落地。DGX-1 系统所具有的革命性 AI 性能也将继续提高银河水滴的 AI 模型训练效率,以助力经过充分迭代的深度学习模型应用至更多场景中。
好文章,需要你的鼓励
网络和基础设施管理技术提供商NetBox Labs完成3500万美元B轮融资。该公司是开源网络基础设施管理平台NetBox的商业化运营方,服务数万家企业用户,包括数十家财富500强公司。NetBox已成为现代技术基础设施构建、管理和自动化的标准平台,可加速创新、简化运营并支持AI应用场景。
这项研究开发了VIDEO-RTS系统,仅用传统方法3.6%的训练数据就让AI学会了真正的视频推理能力。系统采用"纯强化学习"跳过死记硬背阶段,结合"稀疏到密集"的自适应推理策略,在五个权威测试中平均准确率提升2.4%。这一突破性进展可能改变AI视频理解的发展方向。
ITPro Today针对IT专业人士进行的边缘计算策略调查显示,55%的受访者对边缘计算概念仅"有所了解",21%的组织IT预算中边缘计算投资不足5%,而33%的组织至少投入10%。性能提升和安全性是采用边缘计算的主要驱动因素,分析和数据缓存是主要应用场景。Microsoft Azure IoT Edge是最广泛使用的边缘平台,混合云-边缘模型成为主流架构。成本仍是边缘计算采用的最大障碍。
约翰斯·霍普金斯大学研究团队开发出能够自主完成胆囊切除术的手术机器人系统SRT-H。该系统采用分层决策架构,具备自我纠错能力,在8次完整手术测试中实现100%成功率。系统通过观看16000个手术轨迹学习,能够像人类医生一样观察、判断和纠错,代表了手术机器人向真正自主化迈出的重要一步。