常用的生物识别方法包括人脸识别、指纹识别、虹膜识别、步态识别等。其中,步态识别技术可以通过人的身体体型和行走姿态来辨识身份,它是目前远距离复杂场景下几乎唯一可用于身份识别的生物特征识别技术。银河水滴科技公司(以下简称为“银河水滴”)源自于中科院自动化所,是步态识别技术和产业的引领者。
步态识别面临着极具挑战的复杂环境——远距离、跨视角、跨着装、低照度、全天候,是极具挑战、但又极其重要的科技难题,是公认的当前视频大数据解析与应用的核心技术之一。由于其数据环境复杂,因而所需要处理的数据种类繁多。
为了在步态识别过程中通过深度学习方法处理视角、着装、携带物等多种行人特征的同时,保持所生成步态序列的不变性,银河水滴所需处理的数据量十分庞大,因而 AI 模型的训练数据吞吐量大、整体训练速度偏慢,亟需寻找更强大的 GPU 解决方案以更高效地从步态序列中提取更具鲁棒性的特征。
在步态识别 AI 模型训练中,需要通过 GPU 对大量数据进行传输与计算,NVIDIA DGX-1 所具有的高带宽可以大幅加速数据搬运的过程。DGX-1 是一款深度学习系统,专为实现高吞吐量和高互联带宽而构建,可极大提升神经网络训练性能。其系统核心组件是 8 个 NVIDIA V100 GPU,通过混合立体 NVLink 网络拓扑互联。内置的两块 CPU 以供启动、存储管理及深度学习框架协调之用。DGX-1 内嵌于 3 机架单位(3U)机箱中,集电源、冷却、网络、多系统互联及 SSD 文件系统缓存于一体,各组件相互协调,能够优化吞吐量和深度学习训练时间。通过部署 DGX-1 系统,银河水滴取得了比单独部署 GPU 更强大的性能。
在模型训练过程中银河水滴的技术人员发现,DGX-1 可以协助充分发挥 NVIDIA 数据中心 GPU 的潜力。银河水滴在对其模型进行每 100 次迭代时,此前通过单独采用配置了 8 块 NVIDIA V100 GPU 的服务器所需的训练时间是 2 分 40 秒,而在包含 8 块 V100 数据中心 GPU 的 DGX-1 系统中,这一过程则只需花费 1 分 40 秒,缩短了近 40% 的训练时间。
目前,银河水滴的步态识别技术已在全国各地几十个城市落地,在对步态识别 AI 模型进行训练时,部署了包含 8 块 NVIDIA V100 数据中心 GPU 的 NVIDIA DGX-1 系统,通过强劲算力处理多阶段、多种类、多用途的大量数据,加速了银河水滴步态识别技术的应用落地。DGX-1 系统所具有的革命性 AI 性能也将继续提高银河水滴的 AI 模型训练效率,以助力经过充分迭代的深度学习模型应用至更多场景中。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
哈佛、MIT联合研究揭示人类语言理解的神经机制,发现大脑通过"信息出口"将语言从核心系统传递至专业脑区实现深度理解。研究提出浅层与深层理解的区别,为人工智能发展提供重要启示,表明真正智能需要多系统协作而非单一优化。该发现可能改变我们对语言认知的理解。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
腾讯混元等团队开发出革命性的AI视频生成自我评判系统PAVRM和训练方法PRFL,让AI能在创作过程中实时评估和改进视频质量,无需等到完成才反馈。该技术使视频动态表现提升56%,人体结构准确性提升21.5%,训练效率提升1.4倍,为AI视频生成质量带来质的飞跃。