VMware将与新的合作伙伴一起致力于推动一项名为“Certifier Framework for Confidential Computing”的开源项目,该项目旨在克服采用机密计算的一些最大障碍。
VMware目前正走在机密计算开发的最前沿。机密计算是指对正在处理中的数据进行加密的技术。尽管对于服务器中闲置的数据或通过网络传输的数据已经存在强加密,但在使用这些信息时没有任何东西可以保护这些数据。当应用需要访问数据时,信息必须解密为原始的、可读的形式,这意味着在处理信息时特别容易受到黑客的攻击。
机密计算旨在改变这一现状。它基于一种被称为“可信执行环境”的新兴处理器概念,当数据部署在可能由第三方运营的云基础设施或者是边缘服务器的时候,它能够保持数据的机密性和完整性。
通过Certifier Framework for Confidential Computing,VMware和其他芯片制造商的目标是实现易于使用的、独立于平台的应用编程接口标准化,以构建和运行机密计算应用。这个框架让开发人员可以更轻松地创建隐私保护应用,包括基于多个来源聚合的敏感信息的机器学习和数据经济工作负载。VMware表示,该框架为创建和执行保护第三方服务器基础设施(包括公有云、主权云和边缘环境)工作负载所需的信任策略提供了独立于平台的支持。
这些合作伙伴预计,他们在该框架方面的工作最终将通过在x86、Arm和RISC-V处理器架构上实现机密计算而使整个计算行业受益。
VMware表示,有充分的理由希望加速机密计算的发展,因为数据加密对于多云部署至关重要。VMware 表示,出于安全考虑,许多企业工作负载无法运行在云中。此外,机密计算可以在保护人工智能和机器学习新应用中使用知识产权和专有数据方面发挥关键作用。 VMware公司首席技术官Kit Colbert表示,机密计算显然是市场需要的,但除非开发人员能够更轻松地构建此类应用,否则机密计算不会被广泛采用。
他解释说:“机密计算有潜力保护工作负载,无论是在哪里运行,包括在多云和边缘环境中,但挑战在于如何帮助客户轻松地采用和实施该标准。Certifier Framework框架不断发展的贡献者生态系统所做出的集体努力,将有助于为ISV、企业客户和主权云提供商带来这些好处,让他们能够更轻松、更有效地使用这一新兴技术。”
Constellation Research分析师Holger Mueller认为,看到VMWare率先推广机密计算是令人鼓舞的,因为VMware是虚拟机领域的行业领导者,为绝大多数应用工作负载提供了动力。Mueller表示:“VMware正在招募AMD、三星和RISC-V厂商等合作伙伴,以确保硬件级别的虚拟化工作负载是安全的。这对企业来说非常重要。随着越来越多的工作负载转移到云端,他们需要一种更好的方法来保护这些工作负载,而机密计算可以做到这一点,可以在恰当的设备上安全可靠地运行恰当的应用。”
VMware于近日在美国旧金山举行的2023年机密计算峰会上公布了这一新的合作伙伴关系,并在大会上展示了许多涉及机密机器学习应用的技术演示。
AMD公司数据中心生态系统和解决方案公司副总裁Raghu Nambiar表示:“与VMware等行业合作伙伴合作,这对于加速采用机密计算和保护云中工作负载来说是至关重要的。无论组织的规模或技术复杂程度如何,或者工作负载部署在何处,Certifier Framework都将帮助更多客户从机密计算中受益。”
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。