Nvidia创建了一项服务器开放设计以支持其加速器,并认为,以CPU为中心的服务器设计无法容纳多个GPU和SmartNIC。
Nvidia公司首席执行官黄仁勋本周一举行的Computex 2023大会上公布了名为“MGX”的设计,并表示这是必要的,因为现有的服务器设计无法应对Nvidia加速器产生的热量和消耗的功率。
他认为,从1965年IBM System 360首次亮相之日开启的计算历史时代如今已经结束。在 他的讲述中,System 360曾赋予了CPU的全球主导地位以及扩展系统的能力。
他认为,自那以后这种架构一直主导着世界,但CPU性能的提升已经趋于稳定,加速器辅助计算才是未来。
当然,这一论点是Nvidia的核心宗旨。
但黄仁勋用有关生成大型语言模型(LLM)所需工作量这一数据来支持他的观点,他引用了一个例子,假设有960台服务器系统,该系统耗资1000万美元,它需要消耗11Gwh来训练一个大型语言模型。
他断言,只需一对成本为40万美元的、Nvidia驱动的服务器以及封装的GPU就可以完成同样的工作,而功耗仅为0.13 GWh。他还表示,价值3400万美元的、Nvidia驱动的172设备可以用来训练150个大型语言模型,消耗11GWh。
即将推出的、基于Nvidia MGX规范的服务器
黄仁勋的理论是,这种设备很快就会出现在很多企业组织的购物清单上,因为虽然数据中心的建设速度是惊人的,但大家对机架空间和电力的竞争依然很激烈,所以很多用户会想办法重新设计他们的数据中心以提高效率和密度。
这就是MGX规范的用武之地,MGX提供了一种设计,可以在更小的空间内使用更多的Nvidia产品,而不是将其硬塞进仅由CPU驱动的机器中。黄仁勋表示,MGX提供了用户所需的密度。如果需要,它可以愉快地容纳旧的x86 CPU,以及所有Nvidia的加速器。
华擎科技、华硕、技嘉、和硕、QCT和Supermicro都已签约生产这种服务器,黄仁勋表示,这些服务器可以部署为100多种配置中,具有1U、2U和4U等外形规格。
8月,QCT将交付名为S74G-2U的MGX设计,该设计将提供GH200 Grace Hopper Superchip。同月,Supermicro将推出ARS-221GL-NR,采用Grace CPU Superchip。
黄仁勋还宣布,Grace Hopper的生产正在如火如荼地进行中。他表示,Grace Hopper可以用于运行5G网络的家庭环境,以及用于一些生成式AI中,在视频聊天通过网络时对其进行训练,而不是让客户端设备完成所有压缩和解压缩视频的工作。
他还介绍了一款大型交换机Spectrum-X Networking Platform,以提高以太网在运行AI工作负载的大规模云中的效率。
他提到,Nvidia改进了对AI软件堆栈的支持,使其更适合企业使用。
黄仁勋也在考虑机器人技术,因为Nvidia已经开放了Isaac平台,该平台结合了软件和芯片,可以打造用于工业用途的自主机器人,特别是可以用于在仓库里四处搬运货物。
之所以能够做到这些,是因为Nvidia使用封装了全部Nvidia加速硬件的服务器上创建真实世界的数字孪生,从而打造出了这种机器人。
这再次说明了Nvidia为什么要构建MGX服务器规范。
好文章,需要你的鼓励
VidText是一个全新的视频文本理解基准,解决了现有评估体系的关键缺口。它涵盖多种现实场景和多语言内容,提出三层评估框架(视频级、片段级、实例级),并配对感知与推理任务。对18个先进多模态模型的测试显示,即使最佳表现的Gemini 1.5 Pro也仅达46.8%平均分,远低于人类水平。研究揭示输入分辨率、OCR能力等内在因素和辅助信息、思维链推理等外部因素对性能有显著影响,为未来视频文本理解研究提供了方向。
大模型时代,玛丽·米克尔(Mary Meeker)的名字可能大家不一定熟悉,但是在互联网时代,这位被可被誉为“互联网女皇”的。她是美国风险投资家和前华尔街证券分析师,专注于互联网及新兴技术领域。玛丽·米克尔(Mary Meeker)发了一份340页的《人工智能趋势报告》,粗粗看了一下,并没有非常轰动的观点,但是数据比较全面
ZeroGUI是一项突破性研究,实现了零人工成本下的GUI代理自动化在线学习。由上海人工智能实验室和清华大学等机构联合开发,这一框架利用视觉-语言模型自动生成训练任务并提供奖励反馈,使AI助手能够自主学习操作各种图形界面。通过两阶段强化学习策略,ZeroGUI显著提升了代理性能,在OSWorld环境中使UI-TARS和Aguvis模型分别获得14%和63%的相对改进。该研究彻底消除了传统方法对昂贵人工标注的依赖,为GUI代理技术的大规模应用铺平了道路。