近日,国内某音乐院校通过浪潮信息采用AI算力服务,顺利完成音乐分离模型的研发部署,并将模型训练效率提升5倍。该模型可以快速分离歌曲中的人声、贝斯、鼓、钢琴等多种声音,或将电影配乐分成对话、音效、音乐等轨道用于后续的视频剪辑和创作,助力影音从业者大幅提升工作效率。
某音乐院校是国内率先使用AI方法研究音乐分离模型的高校之一。相比传统方法,深度神经网络模型能够达到更好的音乐分离效果,并且具备更强的泛化性。但随着研究工作的深入,算力问题日益凸显。音乐分离模型的架构日新月异,如Facebook在2021年提出的Demucs模型是U-Net卷积架构;2022年引入了Transformer架构,将Demucs迭代为使用Self-attention(自注意力)机制的混合频谱图和波形分离模型。采用新架构的模型能够实现更好的分离效果,但对算力的需求也随之升高。该院校现有的计算资源在数量和质量上都无法满足模型的训练需求,难以根据实际应用场景的需求快速升级、迭代算法。
该音乐院校与浪潮信息密切合作,通过AI算力服务解决算力挑战。浪潮信息以高性能、高质量的AI算力服务协助用户进行音乐分离AI模型的研究开发,很好地满足了模型训练过程中的计算资源需求。同时借助浪潮信息AI算力服务,该音乐院校消除了CPU计算瓶颈并有效提升了GPU资源利用率,将模型的训练效率提升了5倍,从而能够更快、更高效地迭代音乐分离AI模型,处理更多数据,达到更好的分离效果。该院校计划通过AI算力合作,进一步降低模型的使用门槛,为更多影音从业者提供专业服务。
浪潮信息推出的AI算力服务产品,涵盖国际和国内领先的4种AI算力产品、经“源”清洗验证过的语言或多模态的大模型数据集的2种数据产品、由“源”专家团队提供的语言或多模态的大模型训练支持的2种算法产品以及AI训练推理资源管理调度的1种平台产品。目前,AI算力服务相关信息已在元脑生态AIStore平台上线,并提供进一步购买和试用咨询。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。