近日,国内某音乐院校通过浪潮信息采用AI算力服务,顺利完成音乐分离模型的研发部署,并将模型训练效率提升5倍。该模型可以快速分离歌曲中的人声、贝斯、鼓、钢琴等多种声音,或将电影配乐分成对话、音效、音乐等轨道用于后续的视频剪辑和创作,助力影音从业者大幅提升工作效率。
某音乐院校是国内率先使用AI方法研究音乐分离模型的高校之一。相比传统方法,深度神经网络模型能够达到更好的音乐分离效果,并且具备更强的泛化性。但随着研究工作的深入,算力问题日益凸显。音乐分离模型的架构日新月异,如Facebook在2021年提出的Demucs模型是U-Net卷积架构;2022年引入了Transformer架构,将Demucs迭代为使用Self-attention(自注意力)机制的混合频谱图和波形分离模型。采用新架构的模型能够实现更好的分离效果,但对算力的需求也随之升高。该院校现有的计算资源在数量和质量上都无法满足模型的训练需求,难以根据实际应用场景的需求快速升级、迭代算法。
该音乐院校与浪潮信息密切合作,通过AI算力服务解决算力挑战。浪潮信息以高性能、高质量的AI算力服务协助用户进行音乐分离AI模型的研究开发,很好地满足了模型训练过程中的计算资源需求。同时借助浪潮信息AI算力服务,该音乐院校消除了CPU计算瓶颈并有效提升了GPU资源利用率,将模型的训练效率提升了5倍,从而能够更快、更高效地迭代音乐分离AI模型,处理更多数据,达到更好的分离效果。该院校计划通过AI算力合作,进一步降低模型的使用门槛,为更多影音从业者提供专业服务。
浪潮信息推出的AI算力服务产品,涵盖国际和国内领先的4种AI算力产品、经“源”清洗验证过的语言或多模态的大模型数据集的2种数据产品、由“源”专家团队提供的语言或多模态的大模型训练支持的2种算法产品以及AI训练推理资源管理调度的1种平台产品。目前,AI算力服务相关信息已在元脑生态AIStore平台上线,并提供进一步购买和试用咨询。
好文章,需要你的鼓励
Instagram负责人莫塞里在接受采访时透露,平台正考虑引入长视频内容功能,尽管此前一直专注于短视频。他承认为了吸引优质内容,Instagram可能需要支持长视频格式。此外,Meta最近推出了"您的算法"功能,旨在让用户更好地控制信息流内容。莫塞里承诺未来将提供更多工具,让用户主动塑造个性化内容,但完整实现可能需要2-4年时间。
香港大学联合Adobe研究院提出PS-VAE技术,成功解决了AI无法同时具备图像理解和生成能力的难题。通过创新的两阶段训练策略,让AI既能准确理解图片语义,又能生成高质量图像,在图像编辑任务上性能提升近4倍,为统一视觉AI系统开辟新路径,在数字创作、教育、电商等领域具有广阔应用前景。
在信息爆炸的时代,AI实验室的研究员们常常需要面对海量的论文、专利文件、论坛发言等各种渠道的信息。传统的查找方式不仅费时费力,还容易遗漏关键内容。那么,有没有一种方式能让AI真正代替人工,完成从找资料到写出稿的全流程工作?
华中科技大学与马里兰大学研究团队开发出Sage评估框架,首次无需人工标注即可评估AI评判员可靠性。研究发现即使最先进的AI模型在评判任务中也存在严重不一致问题,近四分之一困难情况下无法保持稳定偏好。团队提出明确评判标准和专门微调等改进方法,为构建更可靠AI评估体系提供重要工具。