AMD近日推出了一款新的数据中心加速卡Alveo MA35D,帮助流媒体提供商等企业更高效地处理视频。

MA35D是AMD早期产品Alveo U30的后续产品。MA35D可以同时处理32个1080p视频流,是之前的4倍,同时功耗更低。据报道,AMD内部测试表明,MA35D“通常功耗”要比Alveo U30低66%。
流媒体提供商不会以原始形式向用户分发视频内容,而是打包成压缩文件格式。以压缩格式存储视频占用的存储空间更少,因此,可以以带宽效率更高的方式通过网络发送,从而降低成本。
更改视频流文件格式的任务称为编码。AMD新推出的MA35D加速卡专为执行编码而设计,此外还可以执行将视频流转换回原始文件格式的解码任务。
加速卡是一种计算模块,将一个或者多个芯片封装到比标准服务器还小的机箱中。AMD表示,8个MA35D加速卡可以集成到一台标准的单机架服务器中。一台配备8个MA35D加速卡的设备可以管理多达256个并行视频流。
Alveo MA35D的大部分处理能力是由两个板载芯片提供,也就是AMD所谓的VPU。这是使用5纳米工艺制造的专用集成电路(ASIC)。ASIC是一种定制芯片,可以运行特定类型的工作负载。
针对特定工作负载优化处理器可以使其速度更快。如果应用频繁执行乘法,工程师可以构建具有大量乘法优化电路的芯片,这样的芯片比没有那么多专用电路的、更通用的处理器性能更高。
为AMD的新加速器提供动力的VPU等ASIC,是从零开始构建的,用于运行一种类型的工作负载。ASIC要比FPGA更符合应用的要求,后者是另一种常用于此类任务的芯片。AMD的MA35D加速卡采用完全基于ASIC的设计,而上一代Alveo U30采用的是速度较慢的FPGA。
AMD AECG数据中心事业部总经理Dan Gibbons表示:“我们和我们的客户以及合作伙伴密切合作,不仅要了解他们的技术要求,还要了解他们在部署大容量交互式流媒体服务以实现盈利方面所面临的基础设施挑战。我们开发了具有ASIC架构的Alveo MA35D,可满足这些供应商的定制需求,降低资本和运营支出。”
除了两个ASIC驱动的VPU之外,MA35D还具有其他计算模块,其中一个是AI引擎,每秒可以执行高达22万亿次的运算。据AMD称,该引擎运行AI模型,可以自动提高视频流的质量并压缩视频流以节省带宽。
AMD目前正在向早期客户提供MA35D样品,计划在第三季度开始大批量出货。
好文章,需要你的鼓励
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
谷歌发布基于Gemini 3的快速低成本模型Flash,并将其设为Gemini应用和AI搜索的默认模型。新模型在多项基准测试中表现优异,在MMMU-Pro多模态推理测试中得分81.2%超越所有竞品。该模型已向全球用户开放,并通过Vertex AI和API向企业及开发者提供服务。定价为每百万输入token 0.5美元,输出token 3美元,速度比2.5 Pro快三倍且更节省token用量。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。