能够仅仅使用清洁能源就可以为数据中心供电,这听起来像是一个梦——遗憾的是,在大多数情况下都是如此。尽管现在有很多数据中心的大部分能源都是来自太阳能、风能和其他低碳可再生能源的,但大多数数据中心都无法仅依靠可再生能源运营。
这并不意味着把寻求清洁能源作为数据中心可持续发展战略的一部分是不值得的,当然值得,但认识到可持续能源在数据中心市场的局限性也很重要。
用于数据中心的清洁能源:什么是有效的,什么是无效的
目前,可实际用于为大规模数据中心提供动力的清洁能源主要有三种:风能、太阳能和地热能。所有这三种能源都已经被部署用于为数据中心基础设施提供能量以及/或者帮助冷却数据中心设备(特别是在地热能源系统,可以通过将热量移动到地球深处来散热)。
数据中心也有其他清洁能源采购选项,但在大多数情况下都不是务实的选择。例如,依靠燃烧或以其他方式消耗有机材料产生能源的生物质动力数据中心,这个想法可以追溯到十多年前。但除了一些特殊情况(例如位于丹麦的苹果公司数据中心),生物质尚未成为清洁数据中心能源的常见来源,这可能是因为所需的有机物质数量太大,无法使生物质成为可靠的能源解决方案。
同样地,水力发电长期以来一直被用于为一些数据中心提供能源,但水力发电的局限性在于你只能在某些地方建造水电站——也就是那些水流快速的地方,这使得水力发电对于远离河流的数据中心来说是不切实际的。
风能、太阳能和地热能源的局限性
与生物质能和水电能源相比,风能、太阳能和地热能更适合大规模使用,但也仍然有明显的缺点。
就风能和太阳能而言,最明显的挑战可能是能源可用性会因天气而异。如果是阴天,你的太阳能数据中心将需要替代能源来维持运行。如果风平浪静,你的风电场则可能无法产生足够的兆瓦级电力来维持服务器和数据中心设备的运行。
地热虽然没有这个缺点,它的功能不受天气条件的影响,但由于用地热发电需要建造专门的发电厂,因此与从建设成本较低的风能或太阳能发电场采购能源相比,地热能源采购需要更大的前期投资。事实上,在美国只有不到0.5%的电力是使用地热能源产生的。
清洁能源采购的另一个缺点,是会增加与数据中心设施相关的物理空间。尤其是风能和太阳能发电场,占用大量不动产,可能导致更大规模的栖息地破坏,可能会减少你的碳排放量,但不会对自然环境造成一些损失。
储存可持续能源产生的电力,也可能是一大挑战。除非你手头有大量的电池——电池本身会带来很高的可持续性成本——否则你无法保留风能、太阳能和地热能产生的多余电力。你要么用掉,要么就失去了。
因此,如果你想完全使用清洁能源为你的数据中心供电,那么你通常需要建造清洁能源采购设施,而且如果你想确保他们可以应对能源消耗高峰期,那么总输出容量要远高于数据中心在大多数情况下所需的容量。或者,你必须在高需求时期使用非清洁能源,作为对清洁能源的补充。
清洁能源:不完美,但值得
上述挑战意味着,在大多数情况下,仅使用风能、太阳能、地热或者是其他可再生低碳能源为数据中心供电,对于大多数数据中心来说是不切实际的。几乎总是需要传统能源来补充清洁能源的,或者在清洁能源不可用时作为备用。
但这当然并不意味着投资清洁能源是不值得的。即使你的数据中心仅有20%的能源来自可再生能源,与能源相关的碳排放量仍然可减少20%,这一点不可忽略。将这一成就与对提高能源效率的措施(如液体冷却和智能电源管理系统)上的投资相结合,你就可以在数据中心可持续性方面真正地有所作为。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。