计算机图形芯片制造商Nvidia近日发布第四季度财报,收入、收益和净收入均高于预期水平,使得Nvidia股价在盘后交易中上涨超过8%。
该季度Nvidia的表现超出了华尔街的目标,不过这三大类都出现了同比大幅下滑。该季度Nvidia在不计入股票补偿等特定成本之后的收益为每股88美分,高于分析师普遍预期的81美分。
第四季度Nvidia的收入较上年同期下降21%,至60.5亿美元,但略高于60亿美元的预期水平,净收入下滑53%,至14亿美元。
尽管近几个月半导体行业遭受重创,英特尔和超微半导体等芯片制造商都在苦苦挣扎,但投资者对Nvidia渡过难关的能力更有信心。经济放缓导致Nvidia的个人电脑和其他设备销售陷入停滞,但数据中心业情况不同,其中包括了用于人工智能工作负载的图形处理芯片。
事实上,随着最近ChatGPT等软件引发人们围绕人工智能的热议,Nvidia似乎也从中受益了。Nvidia的GPU是训练和运行机器学习软件的理想选择,这一点也反映在Nvidia的数据中心收入上,这部分收入较上年同期增长11%至36.2亿美元。Nvidia表示,增长主要是因为美国云服务提供商购买了更多产品所推动的。
Moor Insights & Strategy分析师Patrick Moorhead认为,Nvidia的强劲表现主要是因为在人工智能训练方面Nvidia的GPU确实是唯一的选择。他说:“如果你在Nvidia的硬件上进行训练的话,很可能也会在上面运行推理,即使在这个领域有其他更多的选择。”
Nvidia公司首席执行官黄仁勋在与分析师的电话会议中表示,人工智能是推动云客户在Nvidia芯片上投入更多支出的动力之一。他说:“人工智能正处于一个转折点,为在所有行业广泛普及做好了准备。从初创公司到大型企业,我们看到人们对生成式AI的多样化和功能性越来越感兴趣,这引发了全球企业制定和部署AI战略的紧迫感。”
分析师Rob Enderle表示,黄仁勋对于AI和自动驾驶汽车的早期愿景显然让Nvidia从中受益,这一愿景此后也扩展到其他多个不同领域。他解释说,在生成式AI等技术正在掀起颠覆性浪潮之际,Nvidia正在驾驭这股浪潮,而不是被其淹没。
Enderle表示:“显然这要归功于黄仁勋提前几十年预测到了这些需求,然后成功对公司进行定位,让公司以从中受益。我们仍处于这些浪潮的早期阶段,这表明,随着这些技术更积极地进入市场,Nvidia将获得更大的收益。”
数据中心和AI收入的增长帮助Nvidia抵消了游戏业务的急剧下滑,这块业务专注于个人电脑和游戏机的显卡。游戏业务在新冠疫情期间受益于销售额的增长,但随着经济不景气而出现放缓。根据财报显示,该季度游戏收入较去年同期下滑46%,至18.3亿美元,这主要归咎于面向合作伙伴的芯片销售量减少了,因为这些合作伙伴手头上有过多的库存。此外,该季度面向游戏机平台的GPU出货量也有所减少。
Moorhead表示:“游戏业务需要更多的时间来完成从旧卡到新卡的库存再平衡,还需要更多的AAA级游戏来推动第三季度和第四季度销售期的需求。”
其他规模较小的业务则表现喜忧参半。一方面,汽车收入同比飙升135%,收入2.94亿美元。专业可视化业务则收入下滑了65%,仅为2.26亿美元。
展望第一季度,Nvidia预计收入约为65亿美元,高于华尔街预期的63.3亿美元。
Nvidia的股价在今年已经上涨了45%。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。