近日,淮海智算中心携手浪潮信息进行了超大规模参数AI大模型训练性能测试,实测数据表明,千亿参数规模的自然语言AI单体大模型在淮海智算中心计算平台上的训练算力效率达53.5%,刷新了业内AI大模型训练算力效率新高。这意味着淮海智算中心将可为国内生成式AI创新团队提供高性能、高效率的AI大模型训练算力服务。
生成式AI需要基于海量的自然语言或多模态数据集,对拥有巨大参数的超大规模AI模型进行训练,其训练所需AI算力当量非常高,如以PD(Petaflops-Day)为单位来衡量,OpenAI的GPT-3大模型训练的算力当量为3640PD,而浪潮“源1.0”大模型的算力当量则为4095PD。
超大规模AI大模型的训练一般必须在拥有成百上千加速卡的AI服务器集群上进行,如何在AI计算集群上获得更高的训练算力效率则会直接影响到模型训练时长以及算力消耗成本,这对于提升生成式AI研发创新效率有着非常重要的影响。据公开资料表明,GPT-3大模型在其V100 GPU集群上的训练算力效率为21.3%,而浪潮“源1.0”的训练算力效率则达到了44.8%。
针对AI大模型训练的计算特点,浪潮信息AI团队对淮海智算中心算力系统进行了专业设计,对集群架构、高速互联、算力调度等方面进行全面优化,在系统架构上,采用单节点集成8颗加速器的AI服务器,节点内加速器间实现超高速P2P通信,节点间建立极低延迟、超高带宽的Infiniband通信网络。在大模型训练技术层面,成功运用了中文巨量AI模型“源1.0”的训练优化经验,对分布式训练策略进行了针对性优化,通过合理设计张量并行、流水并行和数据并行,精准调整模型结构和训练过程的超参数,最终实现了千亿参数规模AI大模型的训练算力效率达到53.5%。
千亿参数AI模型结构及其实际性能表现
淮海智算中心由安徽省宿州市与浪潮共同推进建设,目标是建成技术先进、架构开放、应用丰富、生态完善的国内领先智算枢纽。淮海智算中心将依靠领先的算力、算法基础设施,开放的技术架构,成熟丰富的生态应用,面向全国提供智能算力、数据和算法服务,打造良好的智算产业生态。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。