在“Triton推理服务器11-模型调度器(1)”文章中,已经说明了有状态(stateful)模型的“控制输入”与“隐式状态管理”的使用方式,本文内容接着就继续说明“调度策略”的使用。
(续前一篇文章的编号)
在决定如何对分发到同一模型实例的序列进行批处理时,序列批量处理器(sequence batcher)可以采用以下两种调度策略的其中一种:
当模型维护每个批量处理槽的状态,并期望给定序列的所有推理请求都分发到同一槽,以便正确更新状态时,需要使用这个策略。此时,序列批量处理程序不仅能确保序列中的所有推理请求,都会分发到同一模型实例,并且确保每个序列都被分发至模型实例中的专用批量处理槽(batch slot)。
下面示例的模型配置,是一个TensorRT有状态模型,使用直接调度策略的序量批处理程序的内容:
name: "direct_stateful_model" platform: "tensorrt_plan" max_batch_size: 2 sequence_batching { max_sequence_idle_microseconds: 5000000 direct { } control_input [ { name: "START" control [ { kind: CONTROL_SEQUENCE_START fp32_false_true: [ 0, 1 ] } ] }, { name: "READY" control [ { kind: CONTROL_SEQUENCE_READY fp32_false_true: [ 0, 1 ] } ] } ] } # 续接右栏 |
# 上接左栏 input [ { name: "INPUT" data_type: TYPE_FP32 dims: [ 100, 100 ] } ] output [ { name: "OUTPUT" data_type: TYPE_FP32 dims: [ 10 ] } ] instance_group [ { count: 2 } ]
|
现在简单说明以下配置的内容:
下图显示了此配置指定的序列批处理程序和推理资源的表示:
每个模型实例都在维护每个批处理槽的状态,并期望将给定序列的所有推理请求分发到同一槽,以便正确更新状态。对于本例,这意味着Triton可以同时4个序列进行推理。
使用直接调度策略,序列批处理程序会执行以下动作:
所识别的推理请求种类 |
执行动作 |
需要启动新序列 |
|
是已分配处理槽序列的一部分 |
将该请求分发到该配置好的批量处理槽 |
是积压工作中序列的一部分 |
将请求放入积压工作中 |
是最后一个推理请求 |
|
下图显示使用直接调度策略,将多个序列调度到模型实例上的执行:
左边显示了到达Triton的5个请求序列,每个序列可以由任意数量的推理请求组成。图右侧显示了推理请求序列是如何随时间安排到模型实例上的,
以上是直接策略对最基本工作原理,很容易理解。
接下来要进一步使用控制输入张量与模型通信的功能,下图是一个分配给模型实例中两个批处理槽的两个序列,每个序列的推理请求随时间而到达,START和READY行显示用于模型每次执行的输入张量值:
随着时间的推移(从右向左),会发生以下情况:
以上就是配合控制输入张量的工作原理。
这种调度策略能让序列批处理器,确保序列中的所有推理请求都被分发到同一模型实例中,然后使用“动态批处理器”将来自不同序列的多个推理批量处理到一起。
使用此策略,模型通常必须使用CONTROL_SEQUENCE_CORRID控件,才能让批量处理清楚每个推理请求是属于哪个序列。通常不需要CONTROL_SEQUENCE_READY控件,因为批处理中所有的推理都将随时准备好进行推理。
下面是一个“最旧调度策略”的配置示例,以前面一个“直接调度策略”进行修改,差异之处只有下面所列出的部分,请自行调整:
直接(direct)策略 |
最旧的(oldest)策略 |
direct { }
|
oldest { max_candidate_sequences: 4 } |
在本示例中,模型需要序列批量处理的开始、结束和相关ID控制输入。下图显示了此配置指定的序列批处理程序和推理资源的表示。
使用最旧的调度策略,序列批处理程序会执行以下工作:
所识别的推理请求种类 |
执行动作 |
需要启动新序列 |
尝试查找具有候选序列空间的模型实例,如果没有实例可以容纳新的候选序列,就将请求放在一个积压工作中 |
已经是候选序列的一部分 |
将该请求分发到该模型实例 |
是积压工作中序列的一部分 |
将请求放入积压工作中 |
是最后一个推理请求 |
模型实例立即从积压工作中删除一个序列,并将其作为模型实例中的候选序列,或者记录如果没有积压工作,模型实例可以处理未来的序列。 |
下图显示将多个序列调度到上述示例配置指定的模型实例上,左图显示Triton接收了四个请求序列,每个序列由多个推理请求组成:
这里假设每个请求的长度是相同的,那么左边候选序列中送进右边批量处理槽的顺序,就是上图中间的排列顺序。
最旧的策略从最旧的请求中形成一个动态批处理,但在一个批处理中从不包含来自给定序列的多个请求,例如上面序列D中的最后两个推理不是一起批处理的。
以上是关于有状态模型的“调度策略”主要内容,剩下的“集成模型”部分,会在“Triton推理服务器13-模型调度器(3)”文中提供完整的说明。【未完,待续】
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。