近日,兴业银行探索利用隐私计算技术,实现了反洗钱信息合规共享与优质企业联合发卡试点,为该行加快数字化转型增添新动能。
进入数字时代,数据成为关键生产要素,如何破解数据保护与利用的“矛盾”成为重要课题。隐私计算作为融合人工智能、密码学、数据科学、计算机硬件等多领域的跨学科技术体系,为数据的开放共享与隐私保护提供了解决方案。
当前,隐私计算主要划分为多方安全计算、联邦学习和可信执行环境三个技术发展方向,可以在保证数据提供方不泄露原始数据的前提下,对数据进行分析计算,保障数据在流通与融合过程中的“可用不可见”。
数据是数字化转型的战略性、基础性资源。兴业银行积极推动树立以数据为核心资产的经营理念,探索隐私计算技术在金融场景的落地应用。在反洗钱领域,该行选择两家控股子公司进行先行试点。反洗钱风险名单数据因客户信息需在不同法人实体间隔离等监管要求,无法在集团范围内直接共享。同时,相较母行,试点子公司所掌握的客户身份、行为、交易信息较少,故在识别客户风险、异常交易以及可疑案件等方面面临极大挑战。
兴业银行基于隐私计算平台,综合应用隐私求交、隐匿查询等多方安全计算技术,保障各法人实体只获取所辖客户范围内风险信息,分别完成了与两家控股子公司的反洗钱客户名单信息的合规共享,提升反洗钱工作准确性,实现集团内风险联防联控。
在信用卡领域,近期,兴业银行与超聚变数字技术有限公司、厦门大学携手,发挥产学研用一体化整体优势联合建设,围绕隐私计算在金融领域应用展开探索,共同打造智慧金融隐私计算平台,实现隐私计算在兴业银行信用卡领域的中心成功试点实践。

这次试点应用是隐私计算技术在全国信用卡发卡进件领域的首次尝试,通过隐私求交、集合元素判断、隐私大小比较等经典算法,实现在保障客户个人信息安全及数据合规的前提下筛选优质客户,优化客户结构,降低逾期风险隐患。
兴业银行相关负责人表示,该行将不断探索隐私计算的应用模式,拓展落地场景范围,进一步提升信贷风控能力、财富营销能力、风险联防联控能力,赋能转型发展,努力实现由经营资产向经营数据的转型。
好文章,需要你的鼓励
在技术快速发展的时代,保护关键系统越来越依赖AI、自动化和行为分析。数据显示,2024年95%的数据泄露源于人为错误,64%的网络事件由员工失误造成。虽然先进的网络防御技术不断发展,但人类判断仍是最薄弱环节。网络韧性不仅是技术挑战,更是人员和战略需求。建立真正的韧性需要机器精确性与人类判断力的结合,将信任视为战略基础设施的关键要素,并将网络韧性提升为国家安全的核心组成部分。
南洋理工大学团队开发了Uni-MMMU基准测试,专门评估AI模型的理解与生成协同能力。该基准包含八个精心设计的任务,要求AI像人类一样"边看边想边画"来解决复杂问题。研究发现当前AI模型在这种协同任务上表现不平衡,生成能力是主要瓶颈,但协同工作确实能提升问题解决效果,为开发更智能的AI助手指明了方向。
自计算机诞生以来,人们就担心机器会背叛创造者。近期AI事件包括数据泄露、自主破坏行为和系统追求错误目标,暴露了当前安全控制的弱点。然而这种结果并非不可避免。AI由人类构建,用我们的数据训练,在我们设计的硬件上运行。人类主导权仍是决定因素,责任仍在我们。
360 AI Research团队发布的FG-CLIP 2是一个突破性的双语精细视觉语言对齐模型,能够同时处理中英文并进行精细的图像理解。该模型通过两阶段训练策略和多目标联合优化,在29个数据集的8类任务中均达到最先进性能,特别创新了文本内模态对比损失机制。团队还构建了首个中文多模态评测基准,填补了该领域空白,为智能商务、安防监控、医疗影像等应用开辟新可能。