NVIDIA发布了TAO工具套件4.0。该工具套件通过全新的AutoML功能、与第三方MLOPs服务的集成以及新的预训练视觉AI模型提高开发者的生产力。该工具套件的企业版现在可以访问预训练模型的完整源代码和模型权重。
该工具套件能够高效训练视觉和对话式AI模型。由于简化了复杂的AI模型和深度学习框架,即便是不具备AI专业知识的开发者也可以使用该工具套件来构建AI模型。通过迁移学习,开发者可以使用自己的数据对NVIDIA预训练模型进行微调,无需AI方面的专业知识或大型训练数据集就可以优化模型推理的吞吐量。
开发者可以使用TAO创建针对特定环境和场景进行优化的自定义生产级模型。新增加的一项重要功能可以帮助开发者在没有大量数据的情况下构建物体检测模型。用例包括检测装配线缺陷、将特定短语翻译成多种语言、管理城市交通等。
开发者可以在这里下载TAO工具套件4.0。
版本亮点
入门资源
新教程
使用TAO工具套件的解决方案
好文章,需要你的鼓励
Salesforce研究团队发布开源工具包MCPEval,基于模型上下文协议(MCP)架构评估AI智能体工具使用性能。该工具突破传统静态测试局限,通过全自动化流程收集详细任务轨迹和协议交互数据,为智能体行为提供前所未有的可视化分析。MCPEval能快速评估MCP工具和服务器,生成综合评估报告,为企业智能体部署提供可操作的改进建议。
清华大学团队推出AnyCap项目,通过轻量级"即插即用"框架解决多模态AI字幕生成缺乏个性化控制的问题。该项目包含模型、数据集和评估基准,能让现有AI系统根据用户需求生成定制化字幕,在不重训基础模型的情况下显著提升控制能力,为AI内容创作的个性化发展奠定基础。
月之暗面Kimi K2技术报告:解读万亿参数的智能体模型(含K2与DeepSeek R1对比)
耶鲁大学团队开发了全球首个AI科学实验设计评估系统ABGEN,测试了18个先进AI模型设计消融实验的能力。研究发现最好的AI系统得分4.11分,仍低于人类专家的4.80分,但在人机协作模式下表现显著改善。研究还发现现有自动评估系统可靠性不足,建立了元评估基准ABGEN-EVAL。这项研究为AI在科学研究中的应用提供了重要评估框架。