NVIDIA发布了TAO工具套件4.0。该工具套件通过全新的AutoML功能、与第三方MLOPs服务的集成以及新的预训练视觉AI模型提高开发者的生产力。该工具套件的企业版现在可以访问预训练模型的完整源代码和模型权重。

该工具套件能够高效训练视觉和对话式AI模型。由于简化了复杂的AI模型和深度学习框架,即便是不具备AI专业知识的开发者也可以使用该工具套件来构建AI模型。通过迁移学习,开发者可以使用自己的数据对NVIDIA预训练模型进行微调,无需AI方面的专业知识或大型训练数据集就可以优化模型推理的吞吐量。
开发者可以使用TAO创建针对特定环境和场景进行优化的自定义生产级模型。新增加的一项重要功能可以帮助开发者在没有大量数据的情况下构建物体检测模型。用例包括检测装配线缺陷、将特定短语翻译成多种语言、管理城市交通等。
开发者可以在这里下载TAO工具套件4.0。
版本亮点
入门资源
新教程
使用TAO工具套件的解决方案
好文章,需要你的鼓励
TPU与GPU之间的竞争正在重塑AI硬件市场格局。GPU基于并行处理,能处理多样化任务,而TPU专门针对张量矩阵运算进行优化。谷歌TPU采用类似RISC的设计理念,通过限制功能来提升特定运算效率。随着Meta计划在2027年采购数十亿美元的TPU芯片,Anthropic宣布使用百万TPU训练Claude模型,TPU生态系统正在获得发展动力,对英伟达的GPU霸主地位构成挑战。
Meta与华盛顿大学联合研究团队开发出无需人类标注的AI评判官自我训练框架。该方法通过生成合成对比数据、自我判断筛选和反复学习,使110亿参数的AI评判官在多项视觉语言任务中超越GPT-4o等大型模型,成本仅为传统方法的1%,为AI自主学习和评估开辟新路径。
本文提出2026年AI发展十大预测,包括AI估值修正、投资泡沫持续、AGI不仅依赖大语言模型、AI代理将加剧工作替代等。作者强调社会接受度对技术发展的重要性,认为成功企业将重构运营模式以AI为核心,同时指出政府仍将重视STEM教育而忽视社会科学的价值。
华中科技大学团队开发出4DLangVGGT技术,首次实现AI系统对4D动态场景的语言理解。该技术突破传统方法需要逐场景训练的限制,能跨场景通用部署。系统结合几何感知和语义理解,不仅能识别物体还能描述其时间变化过程。实验显示在多项指标上超越现有方法1-2%,为机器人、AR/VR、智能监控等领域提供重要技术支撑。