HPE正在通过推出新的应用、分析和开发者服务扩展GreenLake即服务产品组合,旨在帮助企业组织更好地管理多个公有云和私有云。

近日HPE在Discover Frankfurt活动上发布了这些公告,其中首先是在GreenLake for Private Cloud Enterprise预打包私有云产品(去年夏初推出)中扩大了对软件容器编排器Kubernetes的支持。HPE表示,现在该产品支持AWS的Elastic Kubernetes Service Anywhere,让客户能够通过可选的AWS支持在本地创建和操作Kubernetes集群。
HPE还表示,将会推出一组针对工作负载优化、以即用即付进行定价的云实例。此外HPE扩大了合作伙伴生态系统,新增对Red Hat OpenShift容器平台和VMware虚拟化软件的支持。此外,HPE推出了一套消费分析功能,旨在提高客户对三家主流超大规模云厂商及其本地基础设施使用情况和成本的洞察力。
用于私有云的AWS Kubernetes
GreenLake for Private Cloud Enterprise是一个完全托管的私有云,可以同时运行云原生应用和传统应用,为公有云和私有云服务提供了单一的全局命名空间,并从公共基础设施池中自助部署裸机、虚拟机和容器工作负载。
支持Amazon EKS Anywhere则让客户可以在本地运行他们在公有云中所使用的容器,并在混合云中获得一致的体验。开发者可以通过应用界面、命令行界面或者作为基础设施即代码,从中央控制台的选择中部署实例。他们还可以从各种操作系统、容器化应用和工具链集成服务中进行选择。该平台在公有云和私有基础设施中利用的是相同的自动化和持续集成/持续管道。
HPE Greenlake云服务解决方案产品管理副总裁Bryan Thompson说,这是“部署优化的基础设施,但采用多云的方式”。他说:“虚拟机是筹码,但我们还添加了容器实例和裸机。它不是以材料清单的形式提供的,而是以价目表的形式提供,因此和传统HPE解决方案是有所不同的。”
新增的优化实例涵盖通用、计算优化、内存优化和存储优化用例。通用实例针对Web服务器和机器学习数据准备等应用。计算优化服务的目标用途包括容器、虚拟机和NoSQL数据库。内存优化产品则针对内存数据库和高速分析进行了调整。存储优化版本旨在帮助客户管理数据湖和软件定义的存储服务。
HPE公司高级副总裁、Greenlake云服务解决方案总经理Vishal Lall表示:“支持私有云的基础设施不是同质的,我们构建了具有不同风格的基础设施,以发挥这些特定工作负载的性能。”
跨云分析
消费分析服务的增强功能,包括简化了的反馈报告,以及让客户可以用来改进混合环境容量规划和预算的仪表板。
Thompson表示:“我们现在可以使用来自AWS、微软Azure和Google Cloud Platform的入站数据,并将其纳入相同的报告机制中,报告整个云资产中工作负载的消耗情况,无论是在私有云还是公有云中,这是一个私有云解决方案,是多区域支持和多数据中心支持的。”
管理功能方面,包括基于角色的访问控制、配额限制、资源配置指南、安全策略和自助服务策略。
HPE还为GreenLake for Data Fabric和Ezmeral Unified Analytics产品引入了早期访问计划。Data Fabric产品整合了本地、云和边缘设备上不同数据类型。Ezmeral支持用于数据工程、分析和数据科学的开源工具。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。