HPE正在通过推出新的应用、分析和开发者服务扩展GreenLake即服务产品组合,旨在帮助企业组织更好地管理多个公有云和私有云。
近日HPE在Discover Frankfurt活动上发布了这些公告,其中首先是在GreenLake for Private Cloud Enterprise预打包私有云产品(去年夏初推出)中扩大了对软件容器编排器Kubernetes的支持。HPE表示,现在该产品支持AWS的Elastic Kubernetes Service Anywhere,让客户能够通过可选的AWS支持在本地创建和操作Kubernetes集群。
HPE还表示,将会推出一组针对工作负载优化、以即用即付进行定价的云实例。此外HPE扩大了合作伙伴生态系统,新增对Red Hat OpenShift容器平台和VMware虚拟化软件的支持。此外,HPE推出了一套消费分析功能,旨在提高客户对三家主流超大规模云厂商及其本地基础设施使用情况和成本的洞察力。
用于私有云的AWS Kubernetes
GreenLake for Private Cloud Enterprise是一个完全托管的私有云,可以同时运行云原生应用和传统应用,为公有云和私有云服务提供了单一的全局命名空间,并从公共基础设施池中自助部署裸机、虚拟机和容器工作负载。
支持Amazon EKS Anywhere则让客户可以在本地运行他们在公有云中所使用的容器,并在混合云中获得一致的体验。开发者可以通过应用界面、命令行界面或者作为基础设施即代码,从中央控制台的选择中部署实例。他们还可以从各种操作系统、容器化应用和工具链集成服务中进行选择。该平台在公有云和私有基础设施中利用的是相同的自动化和持续集成/持续管道。
HPE Greenlake云服务解决方案产品管理副总裁Bryan Thompson说,这是“部署优化的基础设施,但采用多云的方式”。他说:“虚拟机是筹码,但我们还添加了容器实例和裸机。它不是以材料清单的形式提供的,而是以价目表的形式提供,因此和传统HPE解决方案是有所不同的。”
新增的优化实例涵盖通用、计算优化、内存优化和存储优化用例。通用实例针对Web服务器和机器学习数据准备等应用。计算优化服务的目标用途包括容器、虚拟机和NoSQL数据库。内存优化产品则针对内存数据库和高速分析进行了调整。存储优化版本旨在帮助客户管理数据湖和软件定义的存储服务。
HPE公司高级副总裁、Greenlake云服务解决方案总经理Vishal Lall表示:“支持私有云的基础设施不是同质的,我们构建了具有不同风格的基础设施,以发挥这些特定工作负载的性能。”
跨云分析
消费分析服务的增强功能,包括简化了的反馈报告,以及让客户可以用来改进混合环境容量规划和预算的仪表板。
Thompson表示:“我们现在可以使用来自AWS、微软Azure和Google Cloud Platform的入站数据,并将其纳入相同的报告机制中,报告整个云资产中工作负载的消耗情况,无论是在私有云还是公有云中,这是一个私有云解决方案,是多区域支持和多数据中心支持的。”
管理功能方面,包括基于角色的访问控制、配额限制、资源配置指南、安全策略和自助服务策略。
HPE还为GreenLake for Data Fabric和Ezmeral Unified Analytics产品引入了早期访问计划。Data Fabric产品整合了本地、云和边缘设备上不同数据类型。Ezmeral支持用于数据工程、分析和数据科学的开源工具。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。