加州大学旧金山分校(UCSF)、辛辛那提儿童医院和初创企业 Qure.ai等医学影像领域的领先企业和机构借助 MONAI Deploy,将研究突破应用于临床。

为大规模地提供 AI 加速的医疗服务,医疗机构需要让成千上万的神经网络一同工作,以应对人体生理学、所有疾病,甚至医院运营等方方面面的相关工作,而这在如今的智能医院环境中是一项重大的挑战。
MONAI 是一个采用 NVIDIA 技术加速的开源医学影像 AI 框架,其下载量目前已超 65 万次。借助 MONAI 应用包(MAP),MONAI 就能更轻松地将模型集成到临床工作流中。
MAP通过 MONAI Deploy 提供,其作为一种 AI 模型的打包方式,能够更轻松地在现有医疗生态系统中进行部署。
辛辛那提儿童医院的 Ryan Moore 博士表示:“如果想要在影像部门部署几个 AI 模型来帮助专家识别十几种不同的病症或实现医学影像报告的半自动化创建,需要耗费大量时间和资源来为每个模型寻求合适的硬件和软件基础设施。这在过去虽然‘可能’,但并不 ‘可行’。”
MAP 能够简化这一流程。如果开发者使用 MONAI Deploy 应用软件开发工具包来打包一个应用,医院就可以轻松地在本地或云端运行这一应用。MAP 规格还整合了医疗 IT 标准,比如医学影像互操作性标准 DICOM 等。
伦敦医学影像与 AI 中心 Value-Based Healthcare 项目首席技术官 Jorge Cardoso 表示:“目前,大多数 AI 模型一直处于研发阶段,很少能够真正用于患者护理。MONAI Deploy 将有助于推动研发成果落地,实现更具影响力的临床 AI。”
MONAI Deploy 得到医院和医疗初创企业的采用
世界各地的医疗机构、学术医疗中心和 AI 软件开发商正在采用 MONAI Deploy,包括:
将医学影像 AI 部署到 MAP
MAP规格由 MONAI Deploy 工作组制定。该工作组由来自十几家医学影像机构的专家组成,目标是支持 AI 应用开发者以及运行 AI 应用的临床和基础设施平台。
对于开发者来说,MAP 可以帮助研究者在临床环境中轻松打包和测试模型,从而加速 AI 模型的演进。这使他们能够采集真实世界的反馈,进而对 AI 进行完善和改进。
对于云服务商来说,对(使用云原生技术设计的) MAP 的支持能够助力采用 MONAI Deploy 的研究者和企业通过容器或原生应用集成,在自己的平台上运行 AI 应用。整合 MONAI Deploy 和 MAP 的云平台包括:
着手使用MONAI。关注本周的RSNA大会,了解NVIDIA如何助力构建AI医学影像生态系统。
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。