加州大学旧金山分校(UCSF)、辛辛那提儿童医院和初创企业 Qure.ai等医学影像领域的领先企业和机构借助 MONAI Deploy,将研究突破应用于临床。
为大规模地提供 AI 加速的医疗服务,医疗机构需要让成千上万的神经网络一同工作,以应对人体生理学、所有疾病,甚至医院运营等方方面面的相关工作,而这在如今的智能医院环境中是一项重大的挑战。
MONAI 是一个采用 NVIDIA 技术加速的开源医学影像 AI 框架,其下载量目前已超 65 万次。借助 MONAI 应用包(MAP),MONAI 就能更轻松地将模型集成到临床工作流中。
MAP通过 MONAI Deploy 提供,其作为一种 AI 模型的打包方式,能够更轻松地在现有医疗生态系统中进行部署。
辛辛那提儿童医院的 Ryan Moore 博士表示:“如果想要在影像部门部署几个 AI 模型来帮助专家识别十几种不同的病症或实现医学影像报告的半自动化创建,需要耗费大量时间和资源来为每个模型寻求合适的硬件和软件基础设施。这在过去虽然‘可能’,但并不 ‘可行’。”
MAP 能够简化这一流程。如果开发者使用 MONAI Deploy 应用软件开发工具包来打包一个应用,医院就可以轻松地在本地或云端运行这一应用。MAP 规格还整合了医疗 IT 标准,比如医学影像互操作性标准 DICOM 等。
伦敦医学影像与 AI 中心 Value-Based Healthcare 项目首席技术官 Jorge Cardoso 表示:“目前,大多数 AI 模型一直处于研发阶段,很少能够真正用于患者护理。MONAI Deploy 将有助于推动研发成果落地,实现更具影响力的临床 AI。”
MONAI Deploy 得到医院和医疗初创企业的采用
世界各地的医疗机构、学术医疗中心和 AI 软件开发商正在采用 MONAI Deploy,包括:
将医学影像 AI 部署到 MAP
MAP规格由 MONAI Deploy 工作组制定。该工作组由来自十几家医学影像机构的专家组成,目标是支持 AI 应用开发者以及运行 AI 应用的临床和基础设施平台。
对于开发者来说,MAP 可以帮助研究者在临床环境中轻松打包和测试模型,从而加速 AI 模型的演进。这使他们能够采集真实世界的反馈,进而对 AI 进行完善和改进。
对于云服务商来说,对(使用云原生技术设计的) MAP 的支持能够助力采用 MONAI Deploy 的研究者和企业通过容器或原生应用集成,在自己的平台上运行 AI 应用。整合 MONAI Deploy 和 MAP 的云平台包括:
着手使用MONAI。关注本周的RSNA大会,了解NVIDIA如何助力构建AI医学影像生态系统。
好文章,需要你的鼓励
Panzura在其Symphony数据管理平台中新增了访问控制列表分析和自动修复功能。该平台专门处理EB级非结构化数据集,具备扫描、分层、迁移和合规分析等功能。Panzura声称58%的企业受到权限扩散问题影响,74%的数据泄露涉及特权凭证滥用。新版本重点解决权限继承中断、过度授权访问和合规盲点等问题,提供完整的文件系统权限可视性和快速问题解决能力。
沙特TachyHealth团队开发的32亿参数医疗AI模型Gazal-R1,通过创新的双阶段训练方法在医疗推理任务上超越了12倍大的模型,在MedQA等测试中取得87.1%的优异成绩,展现了精巧训练策略胜过规模扩张的重要启示,为资源有限的医疗AI研究提供了新路径。
Arista Networks宣布收购博通旗下VeloCloud SD-WAN业务,交易金额约10亿美元。VeloCloud是SD-WAN领域先驱企业,拥有集成安全功能的云管理SD-WAN解决方案。此次收购填补了Arista在分支机构连接方面的空白,使其能够提供端到端网络解决方案。同时,前思科高管Todd Nightingale加入担任总裁兼首席运营官,将助力公司拓展更广泛的客户群体。
奥地利维也纳医科大学研究团队开发了RetFiner技术,通过让眼科AI模型同时学习OCT图像和医疗文字描述,显著提升了诊断准确率。该方法采用四种训练任务让AI模型建立图像与文字的深层联系,在三个主流眼科AI模型上实现了2-6个百分点的性能提升,为医学AI发展开辟了新方向。