加州大学旧金山分校(UCSF)、辛辛那提儿童医院和初创企业 Qure.ai等医学影像领域的领先企业和机构借助 MONAI Deploy,将研究突破应用于临床。
为大规模地提供 AI 加速的医疗服务,医疗机构需要让成千上万的神经网络一同工作,以应对人体生理学、所有疾病,甚至医院运营等方方面面的相关工作,而这在如今的智能医院环境中是一项重大的挑战。
MONAI 是一个采用 NVIDIA 技术加速的开源医学影像 AI 框架,其下载量目前已超 65 万次。借助 MONAI 应用包(MAP),MONAI 就能更轻松地将模型集成到临床工作流中。
MAP通过 MONAI Deploy 提供,其作为一种 AI 模型的打包方式,能够更轻松地在现有医疗生态系统中进行部署。
辛辛那提儿童医院的 Ryan Moore 博士表示:“如果想要在影像部门部署几个 AI 模型来帮助专家识别十几种不同的病症或实现医学影像报告的半自动化创建,需要耗费大量时间和资源来为每个模型寻求合适的硬件和软件基础设施。这在过去虽然‘可能’,但并不 ‘可行’。”
MAP 能够简化这一流程。如果开发者使用 MONAI Deploy 应用软件开发工具包来打包一个应用,医院就可以轻松地在本地或云端运行这一应用。MAP 规格还整合了医疗 IT 标准,比如医学影像互操作性标准 DICOM 等。
伦敦医学影像与 AI 中心 Value-Based Healthcare 项目首席技术官 Jorge Cardoso 表示:“目前,大多数 AI 模型一直处于研发阶段,很少能够真正用于患者护理。MONAI Deploy 将有助于推动研发成果落地,实现更具影响力的临床 AI。”
MONAI Deploy 得到医院和医疗初创企业的采用
世界各地的医疗机构、学术医疗中心和 AI 软件开发商正在采用 MONAI Deploy,包括:
将医学影像 AI 部署到 MAP
MAP规格由 MONAI Deploy 工作组制定。该工作组由来自十几家医学影像机构的专家组成,目标是支持 AI 应用开发者以及运行 AI 应用的临床和基础设施平台。
对于开发者来说,MAP 可以帮助研究者在临床环境中轻松打包和测试模型,从而加速 AI 模型的演进。这使他们能够采集真实世界的反馈,进而对 AI 进行完善和改进。
对于云服务商来说,对(使用云原生技术设计的) MAP 的支持能够助力采用 MONAI Deploy 的研究者和企业通过容器或原生应用集成,在自己的平台上运行 AI 应用。整合 MONAI Deploy 和 MAP 的云平台包括:
着手使用MONAI。关注本周的RSNA大会,了解NVIDIA如何助力构建AI医学影像生态系统。
好文章,需要你的鼓励
文章探讨了CIO在2025年应该重点投资的五个AI领域:可信工作流的代理AI、智能文档管理、营销客户数据需求、从数据驱动转向AI驱动、重新审视IT架构以支持AI目标。这些投资可以在短期内带来效益,同时成为长期财务回报的倍增器。CIO需要在这些领域制定务实的AI应用策略,简化平台,加强风险管理,以应对未来的挑战和机遇。
Instabase 公司完成 1 亿美元 D 轮融资,估值 12.4 亿美元。该公司提供非结构化数据处理平台,可从多种文件中提取信息并标准化。新资金将用于增强数据提取、分析和搜索功能,以满足企业 AI 需求。
人工智能在建筑设计领域正展现出惊人潜力。从生成令人赏心悦目的建筑效果图,到创造无限游戏世界,AI 正逐步改变设计流程。尽管人类仍是核心创作者,但 AI 辅助工具正迅速普及,未来可能会大幅提升设计效率和质量。这一趋势引发了对 AI 取代人类建筑师的担忧,也带来了硬件革命和地缘政治影响。
研究显示,高收入公司的CEO正将人工智能置于业务战略的核心地位。欧美企业声称已具备AI项目的基础条件。专家建议避免过度乐观,关注投资回报,构建稳健的数据基础,并优先考虑循序渐进的推广策略。研究还发现,最成功的公司往往是那些高层领导有意识地不直接参与AI战略制定的公司。