加州大学旧金山分校(UCSF)、辛辛那提儿童医院和初创企业 Qure.ai等医学影像领域的领先企业和机构借助 MONAI Deploy,将研究突破应用于临床。
为大规模地提供 AI 加速的医疗服务,医疗机构需要让成千上万的神经网络一同工作,以应对人体生理学、所有疾病,甚至医院运营等方方面面的相关工作,而这在如今的智能医院环境中是一项重大的挑战。
MONAI 是一个采用 NVIDIA 技术加速的开源医学影像 AI 框架,其下载量目前已超 65 万次。借助 MONAI 应用包(MAP),MONAI 就能更轻松地将模型集成到临床工作流中。
MAP通过 MONAI Deploy 提供,其作为一种 AI 模型的打包方式,能够更轻松地在现有医疗生态系统中进行部署。
辛辛那提儿童医院的 Ryan Moore 博士表示:“如果想要在影像部门部署几个 AI 模型来帮助专家识别十几种不同的病症或实现医学影像报告的半自动化创建,需要耗费大量时间和资源来为每个模型寻求合适的硬件和软件基础设施。这在过去虽然‘可能’,但并不 ‘可行’。”
MAP 能够简化这一流程。如果开发者使用 MONAI Deploy 应用软件开发工具包来打包一个应用,医院就可以轻松地在本地或云端运行这一应用。MAP 规格还整合了医疗 IT 标准,比如医学影像互操作性标准 DICOM 等。
伦敦医学影像与 AI 中心 Value-Based Healthcare 项目首席技术官 Jorge Cardoso 表示:“目前,大多数 AI 模型一直处于研发阶段,很少能够真正用于患者护理。MONAI Deploy 将有助于推动研发成果落地,实现更具影响力的临床 AI。”
MONAI Deploy 得到医院和医疗初创企业的采用
世界各地的医疗机构、学术医疗中心和 AI 软件开发商正在采用 MONAI Deploy,包括:
将医学影像 AI 部署到 MAP
MAP规格由 MONAI Deploy 工作组制定。该工作组由来自十几家医学影像机构的专家组成,目标是支持 AI 应用开发者以及运行 AI 应用的临床和基础设施平台。
对于开发者来说,MAP 可以帮助研究者在临床环境中轻松打包和测试模型,从而加速 AI 模型的演进。这使他们能够采集真实世界的反馈,进而对 AI 进行完善和改进。
对于云服务商来说,对(使用云原生技术设计的) MAP 的支持能够助力采用 MONAI Deploy 的研究者和企业通过容器或原生应用集成,在自己的平台上运行 AI 应用。整合 MONAI Deploy 和 MAP 的云平台包括:
着手使用MONAI。关注本周的RSNA大会,了解NVIDIA如何助力构建AI医学影像生态系统。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。