芯片巨头称,能够在几毫秒之内发现实时视频中的伪造形象
英特尔公司宣称开发出一种AI模型,能够通过颜色的细微变化实时检测视频内容是否使用了deepfake技术。从结论来看,如果拍摄对象是真人,那么这种颜色变化会更为明显。

芯片巨头打造的这款FakeCatcher能够在数毫秒内返回结果,且准确率高达96%。
近年来,人们一直担心deepfake视频搅乱舆论、祸害社会。这类视频使用AI算法生成真假难辨的伪造人物画面,可以让政客或名人说出自己没说过的话、做自己没做过的事。
英特尔实验室研究科学家Ilke Demir表示,“如今,deepfake视频可谓无处不在。相信很多朋友也都看过,名人会在其中说自己没说过的话、做自己没做过的事。”不只是名人,就连普通民众也开始沦为deepfake的侵害对象。
根据英特尔的介绍,目前部分基于深度学习的检测器能够分析原始视频数据,试图找出可将其确定为伪造的迹象。相比之下,FakeCatcher的基本思路就完全不同,它会分析真实视频以寻找能证明画面为真的视觉线索。
其中包括在心脏将血液泵送至身体各处时,血液流动而引发的视频像素颜色的细微变化。英特尔方面表示,可以从整个面部收集这些血流信号,再用算法将这些信号转换为时空图,进而由深度学习模型检测视频是否真实。以往的部分检测工具往往需要将视频内容上传至云端以供分析,之后等待几个小时才能得到结果。
但这样的时间间隔将成为其致命软肋,毕竟只要拥有充足的时间和资源,任何伪造视频制作者都可以开发出足以愚弄FakeCatcher的算法。
英特尔在开发FakeCatcher时当然会广泛应用自家技术,包括用于优化深度学习模型的OpenVINO开源工具包、以及用于处理实时图像和视频的OpenCV。开发团队还使用Open Visual Cloud平台为英特尔至强Scalable处理器提供集成软件堆栈。如此一来,FakeCatcher软件得以在第三代至强Scalable处理器上同时运行多达72条不同检测流。
根据英特尔的介绍,FakeCatcher拥有多个潜在用例,包括防止用户将有害deepfake视频上传至社交媒体,以及帮助新闻机构避免播送画面遭到篡改等。
好文章,需要你的鼓励
据报道,ServiceNow正与身份管理平台初创公司Veza进行深度收购谈判,交易金额可能超过10亿美元。Veza的平台帮助企业保护员工工作账户安全,识别未使用账户和权限过度的账户,还能检测违反职责分离政策的账户。该平台还可管理机器身份和应用程序集成。此次收购将补强ServiceNow在用户账户和机器身份管理方面的功能短板。
罗切斯特理工学院团队开发SPHINX系统,专门测试AI视觉推理能力。该系统可无限生成25类视觉推理题目,测试发现最强的GPT-5准确率仅51.1%,远低于人类75.4%。研究显示AI主要困难在视觉信息提取而非逻辑推理,通过强化学习训练可显著改善表现并迁移到其他任务。
谷歌云发布PanyaThAI数字化转型计划,旨在帮助泰国企业部署企业级AI智能体应用。该计划首批支持15家机构,包括朱拉隆功大学、泰国证券交易所等。研究显示AI到2030年可为泰国经济贡献7300亿泰铢。计划提供全栈AI基础设施、咨询服务和员工培训,合作伙伴将培训300名本地专家。已有企业展示成果,如SE-Education通过AI语义搜索将转化率从12%提升至27%。
法国理工学院研究团队开发的I-GLIDE系统,通过将复杂设备拆解为多个子系统分别诊断,结合不确定性量化技术,实现了设备剩余寿命预测的重大突破。该系统在NASA飞机引擎数据集上的预测误差比传统方法降低23-39%,同时提供了前所未有的可解释性,能够精确指出具体组件的健康状况,为工业智能维护提供了新的解决方案。