芯片巨头称,能够在几毫秒之内发现实时视频中的伪造形象
英特尔公司宣称开发出一种AI模型,能够通过颜色的细微变化实时检测视频内容是否使用了deepfake技术。从结论来看,如果拍摄对象是真人,那么这种颜色变化会更为明显。

芯片巨头打造的这款FakeCatcher能够在数毫秒内返回结果,且准确率高达96%。
近年来,人们一直担心deepfake视频搅乱舆论、祸害社会。这类视频使用AI算法生成真假难辨的伪造人物画面,可以让政客或名人说出自己没说过的话、做自己没做过的事。
英特尔实验室研究科学家Ilke Demir表示,“如今,deepfake视频可谓无处不在。相信很多朋友也都看过,名人会在其中说自己没说过的话、做自己没做过的事。”不只是名人,就连普通民众也开始沦为deepfake的侵害对象。
根据英特尔的介绍,目前部分基于深度学习的检测器能够分析原始视频数据,试图找出可将其确定为伪造的迹象。相比之下,FakeCatcher的基本思路就完全不同,它会分析真实视频以寻找能证明画面为真的视觉线索。
其中包括在心脏将血液泵送至身体各处时,血液流动而引发的视频像素颜色的细微变化。英特尔方面表示,可以从整个面部收集这些血流信号,再用算法将这些信号转换为时空图,进而由深度学习模型检测视频是否真实。以往的部分检测工具往往需要将视频内容上传至云端以供分析,之后等待几个小时才能得到结果。
但这样的时间间隔将成为其致命软肋,毕竟只要拥有充足的时间和资源,任何伪造视频制作者都可以开发出足以愚弄FakeCatcher的算法。
英特尔在开发FakeCatcher时当然会广泛应用自家技术,包括用于优化深度学习模型的OpenVINO开源工具包、以及用于处理实时图像和视频的OpenCV。开发团队还使用Open Visual Cloud平台为英特尔至强Scalable处理器提供集成软件堆栈。如此一来,FakeCatcher软件得以在第三代至强Scalable处理器上同时运行多达72条不同检测流。
根据英特尔的介绍,FakeCatcher拥有多个潜在用例,包括防止用户将有害deepfake视频上传至社交媒体,以及帮助新闻机构避免播送画面遭到篡改等。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。