英特尔表示,专注于数据中心的Flex系列 GPU(代号Arctic Sound)终于准备就绪,将在未来几个月内开始交付。
近日英特尔在Hot Chips大会上详细介绍说,虽然Flex与英特尔面向人工智能和高性能计算的Ponte Vecchio GPU都采用了类似的Xe核心架构,但Flex系列GPU的目标市场却截然不同,主要针对媒体和游戏流媒体应用这种流密度比计算能力更重要的场景。
Flex GPU本身更接近于英特尔最近宣布的Arc独立系列GPU,但是已经针对数据中心环境进行了调整。Flex GPU配置了多达4个Xe媒体引擎和32个Xe核心以及光线追踪单元,使用Flex GPU的XMX矩阵数学处理器可以实现AI加速功能。
Flex系列GPU有两种规格:75W Flex 140配备了12GB内存,150W Flex 170配备了16GB内存,两者都有PCIe 4.0接口,而且是被动冷却式单插槽GPU。不过TDP较低的型号是半高的,使其能够部署在多达10个GPU的高密度系统中。
据英特尔称,Flex 140的媒体转码吞吐量是英伟达A10 GPU的5倍,解码性能是英伟达A10 GPU的2倍,支持多达36个并发1080p 60fps流或者8个4K 60fps流。而且,对于流媒体应用来说,Flex GPU是线性扩展的,10卡主机能够以该分辨率提供360个同步流或者使用流行的HEVC H.265格式提供80个4K流。
英特尔这一代Flex GPU的一大特点是原生支持AV1编码,而且据英特尔称,这是第一个以数据中心形式提供的GPU。
免版税的编解码器是由包括亚马逊、Netflix和谷歌等几家大型流媒体公司在开放媒体联盟下开发的,与节省空间的HEVC格式相比,该格式有望节省30%的带宽。
英特尔表示,这种流密度显着降低了媒体流和安卓游戏流工作负载的运营成本,提供了对AI流和元宇宙流的适用性。
说到云游戏,英特尔称单个Flex 170能够以720p 30fps的速度提供68个游戏流,并且在发布时已经在将近90款主流安卓游戏中得到了验证。
但是对于人工智能和高性能计算应用来说,英特尔的Flex GPU显得有些不足。据英特尔称,Flex 140在FP32计算中可实现8 teraflops的峰值性能,与英伟达450美金建议零售价A2000相当。与此同时,英特尔的Flex 170在FP32计算中可实现16 teraflops的性能,大约是英伟达A10号称31.2 teraflops性能的一半。
性能数据表明,Flex 140只是本月早些时候英特尔宣布推出的A50工作站GPU的双芯片版本。该卡在半高、双插槽、主动冷却的规格下FP32峰值性能为4.8 teraflops。
未来几个月,将有超过15家OEM作伙伴提供英特尔的Flex系列GPU,包括思科、戴尔科技、HPE、超微、浪潮和H3C。
好文章,需要你的鼓励
当前软件工程团队正在试验基于AI代理的编码工具和大语言模型,以提高开发速度和质量。然而,AI编码工具的效果很大程度上取决于使用方式。开发者需要提供结构化的问题描述、明确的执行要求和相关上下文,同时建立适当的防护机制。AI不仅能处理重复性任务,还能识别和评估替代方案,从被动助手演进为工作流程推进器。成功的关键在于将AI视为合作伙伴而非快捷工具,并将其整合到软件交付的全生命周期中。
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
Salesforce发布企业级AI智能体平台Agentforce 360,将AI智能体融入几乎所有应用中。该平台采用混合推理引擎Atlas,结合大语言模型的概率思维和业务规则的精确性,支持语音交互和深度集成。以Slack为主要界面,提供Agentforce Builder开发环境,能将非结构化文档转换为可查询记录。Salesforce内部已部署该系统,每周处理180万次对话,主动服务活动增长40%。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。