英特尔表示,专注于数据中心的Flex系列 GPU(代号Arctic Sound)终于准备就绪,将在未来几个月内开始交付。

近日英特尔在Hot Chips大会上详细介绍说,虽然Flex与英特尔面向人工智能和高性能计算的Ponte Vecchio GPU都采用了类似的Xe核心架构,但Flex系列GPU的目标市场却截然不同,主要针对媒体和游戏流媒体应用这种流密度比计算能力更重要的场景。
Flex GPU本身更接近于英特尔最近宣布的Arc独立系列GPU,但是已经针对数据中心环境进行了调整。Flex GPU配置了多达4个Xe媒体引擎和32个Xe核心以及光线追踪单元,使用Flex GPU的XMX矩阵数学处理器可以实现AI加速功能。
Flex系列GPU有两种规格:75W Flex 140配备了12GB内存,150W Flex 170配备了16GB内存,两者都有PCIe 4.0接口,而且是被动冷却式单插槽GPU。不过TDP较低的型号是半高的,使其能够部署在多达10个GPU的高密度系统中。
据英特尔称,Flex 140的媒体转码吞吐量是英伟达A10 GPU的5倍,解码性能是英伟达A10 GPU的2倍,支持多达36个并发1080p 60fps流或者8个4K 60fps流。而且,对于流媒体应用来说,Flex GPU是线性扩展的,10卡主机能够以该分辨率提供360个同步流或者使用流行的HEVC H.265格式提供80个4K流。
英特尔这一代Flex GPU的一大特点是原生支持AV1编码,而且据英特尔称,这是第一个以数据中心形式提供的GPU。
免版税的编解码器是由包括亚马逊、Netflix和谷歌等几家大型流媒体公司在开放媒体联盟下开发的,与节省空间的HEVC格式相比,该格式有望节省30%的带宽。
英特尔表示,这种流密度显着降低了媒体流和安卓游戏流工作负载的运营成本,提供了对AI流和元宇宙流的适用性。
说到云游戏,英特尔称单个Flex 170能够以720p 30fps的速度提供68个游戏流,并且在发布时已经在将近90款主流安卓游戏中得到了验证。
但是对于人工智能和高性能计算应用来说,英特尔的Flex GPU显得有些不足。据英特尔称,Flex 140在FP32计算中可实现8 teraflops的峰值性能,与英伟达450美金建议零售价A2000相当。与此同时,英特尔的Flex 170在FP32计算中可实现16 teraflops的性能,大约是英伟达A10号称31.2 teraflops性能的一半。
性能数据表明,Flex 140只是本月早些时候英特尔宣布推出的A50工作站GPU的双芯片版本。该卡在半高、双插槽、主动冷却的规格下FP32峰值性能为4.8 teraflops。
未来几个月,将有超过15家OEM作伙伴提供英特尔的Flex系列GPU,包括思科、戴尔科技、HPE、超微、浪潮和H3C。
好文章,需要你的鼓励
微软宣布未来四年将在阿联酋投资152亿美元,包括首次向该国运输最先进的英伟达GPU芯片。美国已授权微软向阿联酋出口英伟达芯片,使该国成为美国出口管制外交的试验场和地区AI影响力锚点。这笔投资包括2023年以来的73亿美元支出和2026-2029年的79亿美元计划投入,涵盖数据中心建设、人才培训和AI基础设施扩展,目标到2027年培训100万当地居民。
特拉维夫大学研究团队开发了SAEdit方法,使用稀疏自编码器实现精确的AI图像编辑控制。该技术能像调节音量一样精确控制编辑强度,实现从微笑到大笑的连续调节,同时确保编辑的高度解耦性,避免意外修改其他图像元素。方法具有出色的通用性,可应用于多个AI图像生成平台,为图像编辑领域带来重大突破。
OpenAI与亚马逊云服务签署七年380亿美元协议,在微软Azure之外增加另一个超大规模云服务商来满足其不断增长的AI计算需求。该协议将让OpenAI立即获得AWS EC2 UltraServers访问权限,计算能力将在未来七年内扩展至数千万个CPU。AWS还将为OpenAI构建基于英伟达Blackwell芯片的定制基础设施。尽管签署了这一大额协议,OpenAI仍将继续依赖微软Azure作为其主要云计算合作伙伴。
Code4Me V2是荷兰代尔夫特理工大学开发的开源AI编程助手平台,专为学术研究设计。它解决了商业AI编程工具透明度不足、无法获取交互数据的问题,提供了模块化架构和完整的数据收集框架。该工具性能可媲美商业产品,代码补全延迟仅186.31毫秒,同时支持内联补全和聊天功能。通过透明、可控制、可扩展的设计,为AI辅助编程研究提供了重要的基础设施平台。