芯片制造商AMD近日表示,计划把用于芯片设计的部分电子设计自动化(EDA)工作负载转移到谷歌云上,对自身数据中心能力进行扩展。

EDA是芯片设计过程的一个重要组成部分,涉及到使用计算机辅助设计软件来创建印刷电路板、集成电路和微处理器。芯片制造商需要复杂的设计以极高的密度,把元件封装到电路板上,而EDA提供的标准化流程和自动化可以加快开发的速度。
芯片制造商使用EDA软件可以设计、建模、模拟、测试和分析新的电路设计,用于评估性能,并在投入生产之前发现潜藏的任何问题。
AMD表示,EDA的重要性不言而喻,因此也就不难理解为什么AMD希望在谷歌云上运行其中一些工作负载,谷歌云提供的先进的网络、存储和人工智能功能将让AMD从中受益。
AMD进一步解释说,规模、弹性和资源的有效利用在芯片设计过程中至关重要,因此AMD还打算采用谷歌最新的、计算优化的C2D虚拟机实例,这些实例都是运行在AMD第三代AMD EPYC处理器上的。AMD相信,AMD通过采用这些虚拟机可以并性地运行更多设计,从而在管理短期计算需求的方式上,提供更大的灵活性,而不会减少长期项目的资源分配。
AMD公司芯片设计工程副总裁Mydung Pham表示,谷歌云的C2D实例提供了一种新的高性能资源途径,让他的团队能够将计算解决方案与每个EDA工作流程进行混搭和匹配。
谷歌方面强调,AMD将从中受益,例如AMD可以提高灵活性,以最有效的方式运行应用,通过谷歌人工智能和机器学习工具改进设计和操作,以及提供成本和资源消耗方面的透明度。
谷歌云总经理、基础设施副总裁Sachin Gupta表示,云的速度、规模和安全性为AMD等芯片设计公司带来了他们急需的灵活性。
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。