HPE今天公布了自去年收购Delivered AI之后取得的一些成果:一个用于大规模构建和训练机器学习模型的平台。
HPE表示,这个名为HPE Machine Learning Development System的系统结合了HPE Machine Learning Development Environment与计算、加速器和板载网络,可显着加速模型的开发速度。
该系统旨在解决购买和安装大规模并行处理器所涉及的、通常是很复杂的多步骤过程,包括专门的计算、存储、互连和加速器。此次面市的打包产品让企业组织可以立即就开始构建和训练机器学习模型。
HPE公司高性能计算、关键任务解决方案和实验室总经理Justin Hotard表示:“训练深度学习模型不仅复杂、耗时而且是资源密集的,很多工程师把大量时间花费在管理基础设施上,而不是专注于优化模型上,这意味着他们可以专注于业务成果、而不是技术要求。”
该系统将作为基于HPE Apollo 6500 Gen10系统的单个软件包提供给用户,起步配置是8个Nvidia A100 80 GB GPU,管理堆栈使用HPE ProLiant DL325服务器和1Gb Ethernet Aruba CX 6300交换机。
网络和存储则由Nvidia Quantum InfiniBand提供,监控和管理由HPE Performance Cluster Management提供。
Hotard说:“当今市场上普遍存在的是刚性解决方案,在规模上是非常昂贵的,同时对于客户来说这意味着更复杂、需要更长时间才能获得洞察。”而HPE的目标是为客户“在部署模型的位置和部署模型的基础设施方面提供极大的灵活性”。
HPE还通过推出HPE Swarm Learning(一种用于边缘计算或者分布式计算的隐私保护、去中心化机器学习框架)来巩固自己的AI业务。该框架为客户提供的软件容器可以与使用HPE swarm API的AI模型进行集成,让企业组织能够与其他组织共享AI模型的学习成果,而无需共享任何实际数据。
大多数AI模型训练都依赖于集中的、合并的数据集,由于需要移动大量数据,因此这既低效成本又高。在受监管的行业中,此类模型训练也可能受到限制外部数据共享、移动数据隐私以及所有权方面各项规则的约束,结果就会导致AI模型的质量较低,HPE表示。
HPE Swarm Learning让企业组织在源头位置就可以采用分布式数据,增加训练数据集大小的同时,确保遵循数据治理和数据隐私规定。区块链技术则用于保护链中成员、动态选举领导者、合并模型参数等方面。
此外,HPE还宣布在和高通合作的基础上提供更先进的推理产品,支持异构系统架构以实现大规模AI推理。HPE将提供坚固耐用的Edgeline EL8000 Converged Edge系统以及用于推理和边缘的Qualcomm Cloud AI 100加速器,该产品预计于8月全面上市。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。