HPE今天公布了自去年收购Delivered AI之后取得的一些成果:一个用于大规模构建和训练机器学习模型的平台。
HPE表示,这个名为HPE Machine Learning Development System的系统结合了HPE Machine Learning Development Environment与计算、加速器和板载网络,可显着加速模型的开发速度。
该系统旨在解决购买和安装大规模并行处理器所涉及的、通常是很复杂的多步骤过程,包括专门的计算、存储、互连和加速器。此次面市的打包产品让企业组织可以立即就开始构建和训练机器学习模型。
HPE公司高性能计算、关键任务解决方案和实验室总经理Justin Hotard表示:“训练深度学习模型不仅复杂、耗时而且是资源密集的,很多工程师把大量时间花费在管理基础设施上,而不是专注于优化模型上,这意味着他们可以专注于业务成果、而不是技术要求。”
该系统将作为基于HPE Apollo 6500 Gen10系统的单个软件包提供给用户,起步配置是8个Nvidia A100 80 GB GPU,管理堆栈使用HPE ProLiant DL325服务器和1Gb Ethernet Aruba CX 6300交换机。
网络和存储则由Nvidia Quantum InfiniBand提供,监控和管理由HPE Performance Cluster Management提供。
Hotard说:“当今市场上普遍存在的是刚性解决方案,在规模上是非常昂贵的,同时对于客户来说这意味着更复杂、需要更长时间才能获得洞察。”而HPE的目标是为客户“在部署模型的位置和部署模型的基础设施方面提供极大的灵活性”。
HPE还通过推出HPE Swarm Learning(一种用于边缘计算或者分布式计算的隐私保护、去中心化机器学习框架)来巩固自己的AI业务。该框架为客户提供的软件容器可以与使用HPE swarm API的AI模型进行集成,让企业组织能够与其他组织共享AI模型的学习成果,而无需共享任何实际数据。
大多数AI模型训练都依赖于集中的、合并的数据集,由于需要移动大量数据,因此这既低效成本又高。在受监管的行业中,此类模型训练也可能受到限制外部数据共享、移动数据隐私以及所有权方面各项规则的约束,结果就会导致AI模型的质量较低,HPE表示。
HPE Swarm Learning让企业组织在源头位置就可以采用分布式数据,增加训练数据集大小的同时,确保遵循数据治理和数据隐私规定。区块链技术则用于保护链中成员、动态选举领导者、合并模型参数等方面。
此外,HPE还宣布在和高通合作的基础上提供更先进的推理产品,支持异构系统架构以实现大规模AI推理。HPE将提供坚固耐用的Edgeline EL8000 Converged Edge系统以及用于推理和边缘的Qualcomm Cloud AI 100加速器,该产品预计于8月全面上市。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。