HPE今天公布了自去年收购Delivered AI之后取得的一些成果:一个用于大规模构建和训练机器学习模型的平台。
HPE表示,这个名为HPE Machine Learning Development System的系统结合了HPE Machine Learning Development Environment与计算、加速器和板载网络,可显着加速模型的开发速度。
该系统旨在解决购买和安装大规模并行处理器所涉及的、通常是很复杂的多步骤过程,包括专门的计算、存储、互连和加速器。此次面市的打包产品让企业组织可以立即就开始构建和训练机器学习模型。
HPE公司高性能计算、关键任务解决方案和实验室总经理Justin Hotard表示:“训练深度学习模型不仅复杂、耗时而且是资源密集的,很多工程师把大量时间花费在管理基础设施上,而不是专注于优化模型上,这意味着他们可以专注于业务成果、而不是技术要求。”
该系统将作为基于HPE Apollo 6500 Gen10系统的单个软件包提供给用户,起步配置是8个Nvidia A100 80 GB GPU,管理堆栈使用HPE ProLiant DL325服务器和1Gb Ethernet Aruba CX 6300交换机。
网络和存储则由Nvidia Quantum InfiniBand提供,监控和管理由HPE Performance Cluster Management提供。
Hotard说:“当今市场上普遍存在的是刚性解决方案,在规模上是非常昂贵的,同时对于客户来说这意味着更复杂、需要更长时间才能获得洞察。”而HPE的目标是为客户“在部署模型的位置和部署模型的基础设施方面提供极大的灵活性”。
HPE还通过推出HPE Swarm Learning(一种用于边缘计算或者分布式计算的隐私保护、去中心化机器学习框架)来巩固自己的AI业务。该框架为客户提供的软件容器可以与使用HPE swarm API的AI模型进行集成,让企业组织能够与其他组织共享AI模型的学习成果,而无需共享任何实际数据。
大多数AI模型训练都依赖于集中的、合并的数据集,由于需要移动大量数据,因此这既低效成本又高。在受监管的行业中,此类模型训练也可能受到限制外部数据共享、移动数据隐私以及所有权方面各项规则的约束,结果就会导致AI模型的质量较低,HPE表示。
HPE Swarm Learning让企业组织在源头位置就可以采用分布式数据,增加训练数据集大小的同时,确保遵循数据治理和数据隐私规定。区块链技术则用于保护链中成员、动态选举领导者、合并模型参数等方面。
此外,HPE还宣布在和高通合作的基础上提供更先进的推理产品,支持异构系统架构以实现大规模AI推理。HPE将提供坚固耐用的Edgeline EL8000 Converged Edge系统以及用于推理和边缘的Qualcomm Cloud AI 100加速器,该产品预计于8月全面上市。
好文章,需要你的鼓励
美国网络安全和基础设施安全局指示联邦机构修补影响思科ASA 5500-X系列防火墙设备的两个零日漏洞CVE-2025-20362和CVE-2025-20333。这些漏洞可绕过VPN身份验证并获取root访问权限,已被黑客积极利用。攻击与国家支持的ArcaneDoor黑客活动有关,黑客通过漏洞安装bootkit恶意软件并操控只读存储器实现持久化。思科已发布补丁,CISA要求机构清点易受攻击系统并在今日前完成修补。
康考迪亚大学研究团队通过对比混合量子-经典神经网络与传统模型在三个基准数据集上的表现,发现量子增强模型在准确率、训练速度和资源效率方面均显著优于传统方法。研究显示混合模型的优势随数据集复杂度提升而增强,在CIFAR100上准确率提升9.44%,训练速度提升5-12倍,且参数更少。该成果为实用化量子增强人工智能铺平道路。
TimeWave是一款功能全面的计时器应用,超越了苹果自带时钟应用的功能。它支持创建流式计时器,让用户可以设置连续的任务计时,帮助专注工作。应用采用简洁的黑白设计,融入了Liquid Glass元素。内置冥想、番茄工作法、20-20-20护眼等多种计时模式,支持实时活动显示和Siri快捷指令。免费版提供基础功能,高级版需付费订阅。
沙特KAUST大学团队开发了专门针对阿拉伯语的AI模型家族"Hala",通过创新的"翻译再调优"技术路线,将高质量英语指令数据转化为450万规模的阿拉伯语语料库,训练出350M到9B参数的多个模型。在阿拉伯语专项测试中,Hala在同规模模型中表现最佳,证明了语言专门化策略的有效性,为阿拉伯语AI发展和其他语言的专门化模型提供了可复制的技术方案。