案例研究:性能价格比对于服务器芯片仍然至关重要
AMD公司宣称,其Epyc CPU在去年的F1大奖赛中发挥重要作用、一举助力梅赛德斯-AMG车队拿下总冠军。
梅赛德斯车队依靠第二代Epyc服务器处理器运行流体力学(CFD)计算软件,成功对车队的F1赛车开展空气动力学建模与测试。准确可靠的测试结果也助力AMG赛车在赛场上一骑绝尘、领先对手。
在AMD新近发布的案例研究中,梅赛德斯车队表示,与原有服务器相比、基于Epyc芯片的服务器将流体力学负载运行速度提高了20%。但很遗憾,车队并没有披露此前服务器中搭载的是哪款CPU,希望未来能有更多细节信息供我们评估比较。
无论如何,这项研究确实给我们带来启发,解释了AMD如何凭借更出色的性能价格比压倒英特尔芯片,在F1赛车等约束条件严格、由工程技术驱动的运动赛事中占据优势。
事实上,考虑到流体力学计算对于F1赛车的重要影响,赛事管理机构国际汽车联合会(FIA)对于服务器资金投入做出了严格限制,希望借此平衡各支车队间的竞争力差异。具体来讲,算力配额会按比例划定,成绩较差的车队反而能比顶级车队多拿到25%配额。
这意味着在2021赛季中名列前茅的梅赛德斯车队,比其他车队更需要关注同等资金投入换来的流体力学计算性能。否则,他们在给定时间内所能运行的几何模型模拟任务量将逊色于其他车队,甚至根本无法按时完成动力学计算任务。
梅赛德斯车队空气动力学软件开发负责人Simon Williams表示,他们之所以选择了第二代Epyc CPU,就是因为这款处理器能更快完成流体力学计算、从而缩短确定最佳空气动力学条件的必要周期。
他解释道,“AMD Epyc服务器帮助我们并发运行更多计算任务。空气动力学专家们可以在早晨上班时拿到最新分析结果,在工作期间完成新设计、并在夜间进行第二轮分析。这样次日早上回来时,新一轮结果就再次摆在面前——迭代迅速、效率极高。”
Williams还提到,单块Epyc CPU带来的更强性能,也让梅赛德斯车队得以削减数据中心的占地空间——这项指标同样受到国际汽联的严格约束。
凭借着Epyc处理器的性价比优势,AMD公司已经在过去几年中不断从英特尔手上夺回服务器CPU市场份额。我们期待看到AMD Epyc最终能不能顺利超越英特尔引以为傲的至强服务器处理器。当然,随着近来英特尔Alder Lake PC芯片获得的高度评价、特别是即将推出的新一代Sapphire Rapids CPU,也许AMD并不一定能笑到最后。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。