英伟达按宣布,将对Nvidia AI和Nvidia AI Enterprise平台进行重大升级,新功能旨在推进语音、推荐系统、超大规模推理等工作负载。
英伟达在今天举行的Nvidia GTC 2022上公布了这一消息,与此同时还推出了新的AI Accelerated加速计划,旨在保障使用该平台构建AI应用的性能和可靠性。
这款AI平台是一套工具,其中包括了软件开发套件和AI框架,让开发人员可以使用这些工具跨多个节点进行AI设计、部署、管理和扩展,以支持复杂的训练、推理和机器学习工作负载。
该平台的一个关键组件是Nvidia Triton,一个开源的超大规模模型推理解决方案,现在包括了一个模型导航器,可帮助加速优化AI模型的部署,以及一个用于在Kubernetes中有效扩展的管理服务,以及一个Forest Inference Library用于实现推理树模型。
另一个关键组件Nvidia Riva 2.0已经进行了更新。英伟达表示,Riva是一个语音AI SDK,其中包括了各种具有高识别率的预训练模型,准确性是通用语音识别服务的2倍。最新版本提供了对7种语言的语音识别功能,针对男性和女性声音的、基于深度学习的文本到语音转换功能,以及使用Nvidia TAO工具包进行自定义调整的功能。
该平台还配备了最新版本的Nvidia NeMo Megatron 0.9,一个用于训练大型语言模型的框架,以及Nvidia Merlin 1.0,一个全新的组件,英伟达称之为“端到端推荐框架”,用于构建高性能推荐系统。最后,Nvidia AI现在还配备了Nvidia Maxine,一种音频和视频质量增强软件开发套件,可实现与AI的实时通信。
英伟达表示,Nvidia AI平台从今天开始可供使用,目前多家知名客户正在使用该平台,其中包括Snap。
Snap对话式AI负责人Alan Bekker表示:“在Snapchat上,我们的社区每天使用Lenses的次数超过60亿次。Snap正在使用Nvidia Riva优化我们基于AI的语音功能,并将其提供给Lens Studio创作者,以打造新一代引人入胜的AR体验。”
Nvidia AI Enterprise(即Nvidia AI平台的企业级版本)方面,英伟达表示,现在该版本已经针对所有主流数据中心和云基础设施平台进行了优化、认证和支持。Red Hat OpenShift和VMware vSphere with Tanzu现在支持最新版本的Nvidia Enterprise 2.0。
此外,Nvidia AI Enterprise 2.0增加了对更多AI软件容器的支持,以增强训练和推理能力,例如支持Nvidia TAO Toolkit,让开发人员能够微调预训练的AI模型,更轻松地对其进行定制,即使是在他们缺乏AI或训练数据方面专业知识的情况下。
英伟达表示,最新版本的Nvidia AI Enterprise已经被日本电报电话公司的子公司NTT Communications采用,用于加速自然语言处理和智能视频分析应用的研发,已经取得了良好的效果。
NTT Communication创新中心技术部门总监Shoichiro Henmi表示:“我们有很多应用开发人员现在都在使用加速计算,并且需要一个内部基础设施来提供易于使用的、经济高效的、支持GPU的环境。我们相信Nvidia AI Enterprise将提供一个理想的解决方案,作为支持AI的平台支持我们的VMware vSphere、Kubernetes和云基础架构的大规模开发。”
好文章,需要你的鼓励
甲骨文公司披露获得一份年价值超过300亿美元的云服务合同,消息传出后股价一度上涨近9%。该合同是甲骨文自4月1日2026财年开始以来赢得的多个大型云服务协议之一,预计从2028财年开始贡献超过300亿美元的年收入。虽然买方身份未公开,但最可能的候选者是OpenAI,两家公司正在合作建设AI数据中心网络项目Stargate。
国立台湾大学等机构开发的MuseControlLite技术实现了音乐AI的重大突破。该系统仅用8500万参数就达到61.1%的旋律控制精度,比现有方法减少6.75倍参数量却性能更优。通过创新的位置编码和解耦交叉注意力机制,系统能同时处理文字、音乐属性和音频信号的多重控制,支持音乐生成、修复和风格迁移等功能,为音乐创作民主化开辟新道路。
AI编程编辑器Cursor背后的公司Anysphere推出网页应用,用户可通过浏览器管理AI编程代理网络。该应用支持桌面和移动端,用户可用自然语言分配编程任务、监控代理工作进度并合并代码更改。Cursor年经常性收入已超5亿美元,被超半数财富500强企业使用。新应用面向Pro计划及更高级别订阅用户开放,旨在降低使用门槛。公司预计到2026年AI编程代理将承担软件工程师至少20%的工作。
马里兰大学研究团队在70亿参数的OLMoE模型中首次发现了真实大型语言模型的"Grokking"现象,即AI在训练误差稳定后仍能实现智能突破。他们开发了基于混合专家模型思维路径分析的新方法,能够在无需外部测试的情况下准确预测AI的泛化能力,为AI开发和评估提供了革命性的实时监控工具。