Meta的AI超级计算机是迄今为止最大的NVIDIA DGX A100客户系统。该系统将为Meta的AI研究人员提供5百亿亿次级AI计算性能,采用了最先进的NVIDIA系统、InfiniBand网络和软件,实现了数千个GPU集群的系统优化。

Meta Platforms充分认可NVIDIA,为其有望成为有史以来最强大的研究系统选择了NVIDIA的先进技术。
于今日发布的AI研究超级集群(RSC)已在训练新模型以推动AI发展。
全面部署后,Meta的RSC预计将成为最大的NVIDIA DGX A100客户系统。
Meta在一篇博客文章中表示:“我们希望RSC帮助我们建立全新的AI系统,例如可以为多个不同语言的团队提供实时语音翻译,使他们可以在研究项目上无缝协作,甚至一起玩AR游戏。”
训练最大的AI模型
当RSC在今年晚些时候完全建成时,Meta将用它来训练具有超过1万亿个参数的AI模型。这将推动自然语言处理等领域的发展,比如实时识别不法内容等工作。
除了实现规模性能之外,Meta还将超高的可靠性、安全性、隐私性以及处理“各类AI模型”的灵活性作为RSC的关键指标。

Meta的AI研究超级集群拥有数百个NVIDIA DGX系统并通过NVIDIA Quantum InfiniBand网络相连接,助力Meta AI研究团队提高工作速率。
性能大揭秘
目前,此全新AI超级计算机已经部署了760个NVIDIA DGX A100系统作为其计算节点。共有6080个NVIDIA A100 GPU,通过NVIDIA Quantum 200Gb/s InfiniBand网络连接,可提供1895千万亿次TF32计算性能。
尽管受到新冠疫情的影响,这样一台可运行的AI超级计算机从想法到实现,RSC仅用了18个月! “功臣”之一便是采用NVIDIA DGX A100技术作为基石。
Penguin Computing是NVIDIA合作伙伴网络中负责RSC交付的合作伙伴。除了760个DGX A100系统和InfiniBand网络之外,Penguin还为Meta提供管理服务和AI基础架构优化,包括一个46PB高速缓存的Altus系统。
性能提升20倍
这是Meta第二次选择NVIDIA技术作为其研究平台的基础。2017年,Meta打造了第一代AI研究基础架构,配备了22000个NVIDIA V100 Tensor Core GPU,每日可处理35000项AI训练工作。
Meta的早期基准测试显示,RSC训练大型NLP模型的速度比之前的系统快3倍,运行计算机视觉工作的速度比之前的系统快20倍。
在今年晚些时候的第二阶段,RSC将扩展至16000个GPU。Meta认为届时RSC将提供高达5百亿亿次级混合精度AI计算性能,并且Meta希望通过扩展RSC的存储系统,以每秒16TB的速度提供高达1EB的数据。
可扩展架构
NVIDIA AI技术适用于任何规模的企业应用。
NVIDIA DGX包含一个完整的NVIDIA AI软件栈,可以轻松地从单个系统扩展至完整的DGX SuperPOD,可以在本地或主机托管商处运行。客户亦可以通过NVIDIA DGX Foundry租用DGX系统。
点评:
Meta的AI超级计算机是NVIDIA DGX A100的又一重磅应用落地,此前美国能源部的阿贡国家实验室(Argonne National Laboratory)也采购了DGX A100系统,运用该集群的AI和计算力来更好地研究和应对COVID-19。
DGX A100的优势是提供一站式训练、推理、数据分析平台,其集成了8个全新NVIDIA A100 Tensor Core GPU,具有320GB内存用以训练最大型的AI数据集,以及最新的高速NVIDIA Mellanox HDR 200Gbps互连。
这样用户可在一个完全集成的软件定义平台上根据自己的需求优化计算力和资源,加快数据分析、训练和推理等各种工作负载的速度,这些特性让企业搭建AI平台更加便捷。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。