Meta的AI超级计算机是迄今为止最大的NVIDIA DGX A100客户系统。该系统将为Meta的AI研究人员提供5百亿亿次级AI计算性能,采用了最先进的NVIDIA系统、InfiniBand网络和软件,实现了数千个GPU集群的系统优化。

Meta Platforms充分认可NVIDIA,为其有望成为有史以来最强大的研究系统选择了NVIDIA的先进技术。
于今日发布的AI研究超级集群(RSC)已在训练新模型以推动AI发展。
全面部署后,Meta的RSC预计将成为最大的NVIDIA DGX A100客户系统。
Meta在一篇博客文章中表示:“我们希望RSC帮助我们建立全新的AI系统,例如可以为多个不同语言的团队提供实时语音翻译,使他们可以在研究项目上无缝协作,甚至一起玩AR游戏。”
训练最大的AI模型
当RSC在今年晚些时候完全建成时,Meta将用它来训练具有超过1万亿个参数的AI模型。这将推动自然语言处理等领域的发展,比如实时识别不法内容等工作。
除了实现规模性能之外,Meta还将超高的可靠性、安全性、隐私性以及处理“各类AI模型”的灵活性作为RSC的关键指标。

Meta的AI研究超级集群拥有数百个NVIDIA DGX系统并通过NVIDIA Quantum InfiniBand网络相连接,助力Meta AI研究团队提高工作速率。
性能大揭秘
目前,此全新AI超级计算机已经部署了760个NVIDIA DGX A100系统作为其计算节点。共有6080个NVIDIA A100 GPU,通过NVIDIA Quantum 200Gb/s InfiniBand网络连接,可提供1895千万亿次TF32计算性能。
尽管受到新冠疫情的影响,这样一台可运行的AI超级计算机从想法到实现,RSC仅用了18个月! “功臣”之一便是采用NVIDIA DGX A100技术作为基石。
Penguin Computing是NVIDIA合作伙伴网络中负责RSC交付的合作伙伴。除了760个DGX A100系统和InfiniBand网络之外,Penguin还为Meta提供管理服务和AI基础架构优化,包括一个46PB高速缓存的Altus系统。
性能提升20倍
这是Meta第二次选择NVIDIA技术作为其研究平台的基础。2017年,Meta打造了第一代AI研究基础架构,配备了22000个NVIDIA V100 Tensor Core GPU,每日可处理35000项AI训练工作。
Meta的早期基准测试显示,RSC训练大型NLP模型的速度比之前的系统快3倍,运行计算机视觉工作的速度比之前的系统快20倍。
在今年晚些时候的第二阶段,RSC将扩展至16000个GPU。Meta认为届时RSC将提供高达5百亿亿次级混合精度AI计算性能,并且Meta希望通过扩展RSC的存储系统,以每秒16TB的速度提供高达1EB的数据。
可扩展架构
NVIDIA AI技术适用于任何规模的企业应用。
NVIDIA DGX包含一个完整的NVIDIA AI软件栈,可以轻松地从单个系统扩展至完整的DGX SuperPOD,可以在本地或主机托管商处运行。客户亦可以通过NVIDIA DGX Foundry租用DGX系统。
点评:
Meta的AI超级计算机是NVIDIA DGX A100的又一重磅应用落地,此前美国能源部的阿贡国家实验室(Argonne National Laboratory)也采购了DGX A100系统,运用该集群的AI和计算力来更好地研究和应对COVID-19。
DGX A100的优势是提供一站式训练、推理、数据分析平台,其集成了8个全新NVIDIA A100 Tensor Core GPU,具有320GB内存用以训练最大型的AI数据集,以及最新的高速NVIDIA Mellanox HDR 200Gbps互连。
这样用户可在一个完全集成的软件定义平台上根据自己的需求优化计算力和资源,加快数据分析、训练和推理等各种工作负载的速度,这些特性让企业搭建AI平台更加便捷。
好文章,需要你的鼓励
苹果在iOS 26中推出全新游戏应用,为iPhone、iPad和Mac用户提供个性化的游戏中心。该应用包含五个主要版块:主页展示最近游戏和推荐内容,Arcade专区提供超过200款无广告游戏,好友功能显示Game Center动态并支持游戏挑战,资料库可浏览已安装游戏并提供筛选选项,搜索功能支持按类别浏览。iOS 26.2版本还增加了游戏手柄导航支持,为游戏玩家提供更便捷的操作体验。
上海AI实验室联合团队开发RoboVIP系统,通过视觉身份提示技术解决机器人训练数据稀缺问题。该系统能生成多视角、时间连贯的机器人操作视频,利用夹爪状态信号精确识别交互物体,构建百万级视觉身份数据库。实验显示,RoboVIP显著提升机器人在复杂环境中的操作成功率,为机器人智能化发展提供重要技术突破。
睡眠耳塞制造商Ozlo正将其产品转型为数据平台。公司与冥想应用Calm建立合作,利用SDK分享睡眠传感器数据,帮助内容创作者了解用户真实反馈。Ozlo计划推出AI睡眠助手、耳鸣治疗订阅服务和床边音箱等新产品,并收购了脑电图技术公司Segotia,预计2027年推出脑电监测产品进军医疗设备市场,目前正在进行B轮融资。
英伟达研究团队提出GDPO方法,解决AI多目标训练中的"奖励信号坍缩"问题。该方法通过分别评估各技能再综合考量,避免了传统GRPO方法简单相加导致的信息丢失。在工具调用、数学推理、代码编程三大场景测试中,GDPO均显著优于传统方法,准确率提升最高达6.3%,且训练过程更稳定。该技术已开源并支持主流AI框架。