过去几年石油和天然气行业面临来自方方面面的挑战,尽管如此,为了使上游和下游业务都处于领先地位,该行业不得不继续在超级计算资源上大举支出。
全球超级计算500强榜单中就有很多石油和天然气超级巨头。意大利埃尼公司的HPC5位列第9位、沙特阿美公司的Dammam-7位列第11位,Ghawar位列第19位,法国道达尔公司的Pangea III位列第21位,仅在前25强中就有这么多的石油和天然气巨头,而且这些仅仅是冰山的一角,只是进行了基准测试并有性能指标记录的系统。
TGS公司的Keith Gray表示,即便是拥有这样的超算资源,如今勘探、新站点开发、地震成像和生产仍然需要更多算力。“由于计算能力的限制,我们有很多本来可以推动更高成像分辨率以及全新地震采集技术的想法在当下仍然是无法实现的。我们有算法来提高计算的准确性,所有这些能力意味着高性能计算对我们来说是至关重要的。”
Gray本身在石油和天然气超级计算界享有盛誉,此前他在BP公司负责计算基础设施投资工作有3年多时间,之后加入TGS担任顾问到现在。他指出,石油和天然气行业出现了一些新的趋势,这些趋势可能会对上游和下游的HPC支出产生影响。
鉴于行业性限制,石油和天然气行业的目标是提高从发现到生产这一整个链条的效率,而这在当下意味着要很好地利用现有投资。他解释说,最重要的趋势之一,是以基础设施为主导的探索。
“这是发现新资源和延长重要基础设施投资寿命的潜在途径。”从本质上讲,这利用了在关键领域的探索工作,并将其推广到周边领域。“将会减少无目标的探索,相反,这些以基础设施为主导的探索将是非常惊喜地,随着时间的推移是可以重复的。”
他补充说,展望未来,除了地震建模和油藏模拟对算力有要求之外,还有机器学习的使用也意味着内存带宽将是未来最重要的挑战之一。Gary表示,目前机器学习技术已经被很好地用于增强传统的石油和天然气应用。
最近,Hyperion Research(前身为IDC高性能计算部门)首席执行官Earl Joseph在高性能计算用户论坛上表示,今年地理科学领域在服务器上的支出预计将达到86.65亿美元,这一数字自2016年到2019年来一直在稳步增长,虽然2020年因为疫情的影响增长并不明显。“展望未来,我们预计石油和天然气行业在这方面的支出将稳定增长,但到2025年将基本持平”,这主要是由于他提到的设备更新相关的、预期内的周期。
Joseph表示,处理器和加速器阵容日益多样化,石油和天然气领域的系统规模也在不断扩大。每家公司都有不同的系统设计策略,有些采用高端的GPU加速器,有些则只使用了CPU。
好文章,需要你的鼓励
物联网连接系统提供商Soracom发布连接虚拟化管理器,旨在提升物联网部署的灵活性和蜂窝连接控制能力。该平台能够在单个物联网SIM卡上协调管理多个连接配置文件,支持动态远程管理和切换,包括第三方移动网络运营商配置文件。系统已与丰田汽车合作在车联网项目中验证,计划于2025财年末发布。
哈佛大学研究团队开发出LangSplatV2系统,实现了超高速3D语言查询功能。该系统通过创新的稀疏编码技术和高效渲染算法,将3D场景语言理解速度提升了47倍,达到每秒384帧的实时处理能力。系统采用全局语义字典和稀疏系数表示,彻底解决了传统方法中解码器速度瓶颈问题,为AR/VR、智能机器人等应用提供了强大的技术基础。
自主机器人初创公司Cartken原本专注于校园和东京街头的四轮送餐机器人,现已将重心转向工业领域。该公司CEO表示,当企业开始询问在工厂和实验室使用其机器人时,他们发现了巨大的工业需求。2023年,德国制造商ZF Lifetec成为首个大型工业客户。凭借多年送餐数据训练的AI技术,机器人可轻松适应工业环境。公司已推出载重660磅的Cartken Hauler等新产品,并与三菱深化合作,后者将采购近100台机器人用于日本工业设施。
马里兰大学研究团队提出了CoLa(Chain-of-Layers)方法,让AI模型能够根据任务难度动态调整内部层的使用策略,实现"快思考"和"慢思考"的灵活切换。通过蒙特卡洛树搜索算法,该方法在推理任务上显著提升了模型的准确性和效率,为75%的正确答案找到了更短的处理路径,并纠正了60%的错误答案,为AI模型的架构优化开辟了新方向。