过去几年石油和天然气行业面临来自方方面面的挑战,尽管如此,为了使上游和下游业务都处于领先地位,该行业不得不继续在超级计算资源上大举支出。
全球超级计算500强榜单中就有很多石油和天然气超级巨头。意大利埃尼公司的HPC5位列第9位、沙特阿美公司的Dammam-7位列第11位,Ghawar位列第19位,法国道达尔公司的Pangea III位列第21位,仅在前25强中就有这么多的石油和天然气巨头,而且这些仅仅是冰山的一角,只是进行了基准测试并有性能指标记录的系统。
TGS公司的Keith Gray表示,即便是拥有这样的超算资源,如今勘探、新站点开发、地震成像和生产仍然需要更多算力。“由于计算能力的限制,我们有很多本来可以推动更高成像分辨率以及全新地震采集技术的想法在当下仍然是无法实现的。我们有算法来提高计算的准确性,所有这些能力意味着高性能计算对我们来说是至关重要的。”
Gray本身在石油和天然气超级计算界享有盛誉,此前他在BP公司负责计算基础设施投资工作有3年多时间,之后加入TGS担任顾问到现在。他指出,石油和天然气行业出现了一些新的趋势,这些趋势可能会对上游和下游的HPC支出产生影响。
鉴于行业性限制,石油和天然气行业的目标是提高从发现到生产这一整个链条的效率,而这在当下意味着要很好地利用现有投资。他解释说,最重要的趋势之一,是以基础设施为主导的探索。
“这是发现新资源和延长重要基础设施投资寿命的潜在途径。”从本质上讲,这利用了在关键领域的探索工作,并将其推广到周边领域。“将会减少无目标的探索,相反,这些以基础设施为主导的探索将是非常惊喜地,随着时间的推移是可以重复的。”
他补充说,展望未来,除了地震建模和油藏模拟对算力有要求之外,还有机器学习的使用也意味着内存带宽将是未来最重要的挑战之一。Gary表示,目前机器学习技术已经被很好地用于增强传统的石油和天然气应用。
最近,Hyperion Research(前身为IDC高性能计算部门)首席执行官Earl Joseph在高性能计算用户论坛上表示,今年地理科学领域在服务器上的支出预计将达到86.65亿美元,这一数字自2016年到2019年来一直在稳步增长,虽然2020年因为疫情的影响增长并不明显。“展望未来,我们预计石油和天然气行业在这方面的支出将稳定增长,但到2025年将基本持平”,这主要是由于他提到的设备更新相关的、预期内的周期。
Joseph表示,处理器和加速器阵容日益多样化,石油和天然气领域的系统规模也在不断扩大。每家公司都有不同的系统设计策略,有些采用高端的GPU加速器,有些则只使用了CPU。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。