过去几年石油和天然气行业面临来自方方面面的挑战,尽管如此,为了使上游和下游业务都处于领先地位,该行业不得不继续在超级计算资源上大举支出。
全球超级计算500强榜单中就有很多石油和天然气超级巨头。意大利埃尼公司的HPC5位列第9位、沙特阿美公司的Dammam-7位列第11位,Ghawar位列第19位,法国道达尔公司的Pangea III位列第21位,仅在前25强中就有这么多的石油和天然气巨头,而且这些仅仅是冰山的一角,只是进行了基准测试并有性能指标记录的系统。
TGS公司的Keith Gray表示,即便是拥有这样的超算资源,如今勘探、新站点开发、地震成像和生产仍然需要更多算力。“由于计算能力的限制,我们有很多本来可以推动更高成像分辨率以及全新地震采集技术的想法在当下仍然是无法实现的。我们有算法来提高计算的准确性,所有这些能力意味着高性能计算对我们来说是至关重要的。”
Gray本身在石油和天然气超级计算界享有盛誉,此前他在BP公司负责计算基础设施投资工作有3年多时间,之后加入TGS担任顾问到现在。他指出,石油和天然气行业出现了一些新的趋势,这些趋势可能会对上游和下游的HPC支出产生影响。
鉴于行业性限制,石油和天然气行业的目标是提高从发现到生产这一整个链条的效率,而这在当下意味着要很好地利用现有投资。他解释说,最重要的趋势之一,是以基础设施为主导的探索。
“这是发现新资源和延长重要基础设施投资寿命的潜在途径。”从本质上讲,这利用了在关键领域的探索工作,并将其推广到周边领域。“将会减少无目标的探索,相反,这些以基础设施为主导的探索将是非常惊喜地,随着时间的推移是可以重复的。”
他补充说,展望未来,除了地震建模和油藏模拟对算力有要求之外,还有机器学习的使用也意味着内存带宽将是未来最重要的挑战之一。Gary表示,目前机器学习技术已经被很好地用于增强传统的石油和天然气应用。
最近,Hyperion Research(前身为IDC高性能计算部门)首席执行官Earl Joseph在高性能计算用户论坛上表示,今年地理科学领域在服务器上的支出预计将达到86.65亿美元,这一数字自2016年到2019年来一直在稳步增长,虽然2020年因为疫情的影响增长并不明显。“展望未来,我们预计石油和天然气行业在这方面的支出将稳定增长,但到2025年将基本持平”,这主要是由于他提到的设备更新相关的、预期内的周期。
Joseph表示,处理器和加速器阵容日益多样化,石油和天然气领域的系统规模也在不断扩大。每家公司都有不同的系统设计策略,有些采用高端的GPU加速器,有些则只使用了CPU。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。