Panmnesia 通过在统一虚拟内存空间中添加快速 CXL 访问外部内存来扩充 GPU 内存的方案,赢得了 CES 创新奖。
Panmnesia 表示,大规模生成式 AI 训练任务可能会受到内存限制,因为 GPU 仅限于 GB 级别的高带宽内存 (HBM),而实际可能需要 TB 级别的内存。解决这个问题的常规方法是增加更多 GPU,这虽然能获得更多内存,但代价是产生冗余的 GPU。Panmnesia 使用了其 CXL (Computer eXpress Link) 技术,通过 PCIe 总线将外部内存添加到主机处理器,这一过程由 Panmnesia 的 CXL 3.1 控制器芯片调控。该控制器的往返时间少于 100 纳秒,比 SMT (同步多线程) 和 TPP (透明页面放置) 方法所需的 250 纳秒快 3 倍以上。
Panmnesia 发言人表示:"我们的 GPU 内存扩展套件...因其能够有效降低 AI 基础设施成本,已经引起了 AI 数据中心领域公司的广泛关注。"
该技术于去年夏天公布,并在 10 月的 OCP 全球峰会上展示。公司提供了一份可下载的 CXL-GPU 技术简报,其中提到其 CXL 控制器具有两位数纳秒的延迟,据了解约为 80 纳秒。文档中的高层次图表展示了该设置可以连接 DRAM 或 NVMe SSD 端点 (EPs) 到 GPU。
更详细地说,第二张 Panmnesia 图表显示 GPU 通过 PCIe 总线连接到 CXL Root Complex 或主机桥接设备,该设备将 GPU 的高带宽内存(主机管理的设备内存)与 CXL 端点设备内存统一到一个统一虚拟内存空间 (UVM) 中。
这个主机桥接设备"一端连接系统总线端口,另一端连接多个 CXL 根端口。该设置的关键组件之一是 HDM 解码器,负责管理每个根端口的系统内存(称为主机物理地址,HPA)的地址范围。这些根端口设计灵活,能够通过 PCIe 连接支持 DRAM 或 SSD EPs。" GPU 可以通过加载-存储指令访问这个统一的可缓存空间中的所有内存。
Panmnesia 在 YouTube 上发布了一个视频,以简化形式展示了其 CXL 访问 GPU 内存方案。
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。