Panmnesia 通过在统一虚拟内存空间中添加快速 CXL 访问外部内存来扩充 GPU 内存的方案,赢得了 CES 创新奖。
Panmnesia 表示,大规模生成式 AI 训练任务可能会受到内存限制,因为 GPU 仅限于 GB 级别的高带宽内存 (HBM),而实际可能需要 TB 级别的内存。解决这个问题的常规方法是增加更多 GPU,这虽然能获得更多内存,但代价是产生冗余的 GPU。Panmnesia 使用了其 CXL (Computer eXpress Link) 技术,通过 PCIe 总线将外部内存添加到主机处理器,这一过程由 Panmnesia 的 CXL 3.1 控制器芯片调控。该控制器的往返时间少于 100 纳秒,比 SMT (同步多线程) 和 TPP (透明页面放置) 方法所需的 250 纳秒快 3 倍以上。
Panmnesia 发言人表示:"我们的 GPU 内存扩展套件...因其能够有效降低 AI 基础设施成本,已经引起了 AI 数据中心领域公司的广泛关注。"
该技术于去年夏天公布,并在 10 月的 OCP 全球峰会上展示。公司提供了一份可下载的 CXL-GPU 技术简报,其中提到其 CXL 控制器具有两位数纳秒的延迟,据了解约为 80 纳秒。文档中的高层次图表展示了该设置可以连接 DRAM 或 NVMe SSD 端点 (EPs) 到 GPU。
更详细地说,第二张 Panmnesia 图表显示 GPU 通过 PCIe 总线连接到 CXL Root Complex 或主机桥接设备,该设备将 GPU 的高带宽内存(主机管理的设备内存)与 CXL 端点设备内存统一到一个统一虚拟内存空间 (UVM) 中。
这个主机桥接设备"一端连接系统总线端口,另一端连接多个 CXL 根端口。该设置的关键组件之一是 HDM 解码器,负责管理每个根端口的系统内存(称为主机物理地址,HPA)的地址范围。这些根端口设计灵活,能够通过 PCIe 连接支持 DRAM 或 SSD EPs。" GPU 可以通过加载-存储指令访问这个统一的可缓存空间中的所有内存。
Panmnesia 在 YouTube 上发布了一个视频,以简化形式展示了其 CXL 访问 GPU 内存方案。
好文章,需要你的鼓励
惠普企业(HPE)发布搭载英伟达Blackwell架构GPU的新服务器,抢占AI技术需求激增市场。IDC预测,搭载GPU的服务器年增长率将达46.7%,占总市场价值近50%。2025年服务器市场预计增长39.9%至2839亿美元。英伟达向微软等大型云服务商大量供应Blackwell GPU,每周部署约7.2万块,可能影响HPE服务器交付时间。HPE在全球服务器市场占13%份额。受美国出口限制影响,国际客户可能面临额外限制。新服务器将于2025年9月2日开始全球发货。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
安全专业协会ISACA面向全球近20万名认证安全专业人员推出AI安全管理高级认证(AAISM)。研究显示61%的安全专业人员担心生成式AI被威胁行为者利用。该认证涵盖AI治理与项目管理、风险管理、技术与控制三个领域,帮助网络安全专业人员掌握AI安全实施、政策制定和风险管控。申请者需持有CISM或CISSP认证。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。