Panmnesia 通过在统一虚拟内存空间中添加快速 CXL 访问外部内存来扩充 GPU 内存的方案,赢得了 CES 创新奖。
Panmnesia 表示,大规模生成式 AI 训练任务可能会受到内存限制,因为 GPU 仅限于 GB 级别的高带宽内存 (HBM),而实际可能需要 TB 级别的内存。解决这个问题的常规方法是增加更多 GPU,这虽然能获得更多内存,但代价是产生冗余的 GPU。Panmnesia 使用了其 CXL (Computer eXpress Link) 技术,通过 PCIe 总线将外部内存添加到主机处理器,这一过程由 Panmnesia 的 CXL 3.1 控制器芯片调控。该控制器的往返时间少于 100 纳秒,比 SMT (同步多线程) 和 TPP (透明页面放置) 方法所需的 250 纳秒快 3 倍以上。
Panmnesia 发言人表示:"我们的 GPU 内存扩展套件...因其能够有效降低 AI 基础设施成本,已经引起了 AI 数据中心领域公司的广泛关注。"
该技术于去年夏天公布,并在 10 月的 OCP 全球峰会上展示。公司提供了一份可下载的 CXL-GPU 技术简报,其中提到其 CXL 控制器具有两位数纳秒的延迟,据了解约为 80 纳秒。文档中的高层次图表展示了该设置可以连接 DRAM 或 NVMe SSD 端点 (EPs) 到 GPU。
更详细地说,第二张 Panmnesia 图表显示 GPU 通过 PCIe 总线连接到 CXL Root Complex 或主机桥接设备,该设备将 GPU 的高带宽内存(主机管理的设备内存)与 CXL 端点设备内存统一到一个统一虚拟内存空间 (UVM) 中。
这个主机桥接设备"一端连接系统总线端口,另一端连接多个 CXL 根端口。该设置的关键组件之一是 HDM 解码器,负责管理每个根端口的系统内存(称为主机物理地址,HPA)的地址范围。这些根端口设计灵活,能够通过 PCIe 连接支持 DRAM 或 SSD EPs。" GPU 可以通过加载-存储指令访问这个统一的可缓存空间中的所有内存。
Panmnesia 在 YouTube 上发布了一个视频,以简化形式展示了其 CXL 访问 GPU 内存方案。
好文章,需要你的鼓励
在2025年KubeCon/CloudNativeCon北美大会上,云原生开发社区正努力超越AI炒作,理性应对人工智能带来的风险与机遇。随着开发者和运营人员广泛使用AI工具构建AI驱动的应用功能,平台工程迎来复兴。CNCF推出Kubernetes AI认证合规程序,为AI工作负载在Kubernetes上的部署设定开放标准。会议展示了网络基础设施层优化、AI辅助开发安全性提升以及AI SRE改善可观测性工作流等创新成果。
香港大学研究团队提出LightReasoner框架,通过让小型"业余"模型与大型"专家"模型对比,识别关键推理步骤并转化为训练信号。该方法在数学推理任务上实现28.1%性能提升,同时将训练时间、样本需求和词元使用量分别减少90%、80%和99%,完全无需人工标注。研究颠覆了传统训练思路,证明通过模型间行为差异可以实现高效的自监督学习,为资源受限环境下的AI能力提升提供了新路径。
DeepL作为欧洲AI领域的代表企业,正将业务拓展至翻译之外,推出面向企业的AI代理DeepL Agent。CEO库蒂洛夫斯基认为,虽然在日常翻译场景面临更多竞争,但在关键业务级别的企业翻译需求中,DeepL凭借高精度、质量控制和合规性仍具优势。他对欧盟AI法案表示担忧,认为过度监管可能阻碍创新,使欧洲在全球AI竞争中落后。
马里兰大学研究团队开发了MONKEY适配器,一种无需额外训练的AI绘画控制技术。该方法通过"两步走"策略解决了个性化AI绘画中主体保真与背景控制难以兼得的问题:先让AI识别主体区域生成"透明胶片",再在第二次生成中让主体区域听从参考图片、背景区域听从文字描述。实验证明该方法在保持主体特征和响应文字要求两方面均表现出色,为AI绘画的精细化控制提供了新思路。