Nvidia与VMware长达一年的合作终于取得了成果,今天正式推出了Nvidia AI Enterprise 平台,这是一套AI工具和框架,可以虚拟化AI工作负载并在Nvidia认证的服务器系统上运行这些负载。

Nvidia表示,Nvidia AI Enterprise将让企业能够运行新型AI工作负载,并通过单一平台对其进行管理,此外还可以让企业在靠近数据所在位置的地方部署支持AI的基础设施,无论是在云中、数据中心还是网络边缘。
Nvidia AI Enterprise的关键组件之一是Nvidia GPU Cloud,这是一个针对深度学习和高性能计算的优化软件工具目录,依赖Nvidia GPU的强大性能。Nvidia解释说,通过将这些工具与VMware vSphere集成,企业可以更轻松地在现有服务器上部署AI工作负载。
Nvidia企业计算主管Manuvir Das在新闻简报会上表示,Nvidia AI Enterprise的推出是AI新篇章的开始。他说,现在全球数以千计的企业采用了Nvidia软件,他们利用主流服务器在VMware上运行工作负载。以前,AI工作负载需要专门的基础设施,而现在这个情况完全改变了。
Das说:“Nvidia AI已经面向所有企业准备就绪了。现在,所有企业功能都被融入了AI。”
Nvidia表示,Nvidia AI Enterprise平台可以在VMware vSphere上运行AI工作负载,运行在来自戴尔、HPE、浪潮、联想、技嘉和超微销售的认证系统上。这些厂商售卖的系统采用了一系列Nvidia GPU,包括最先进的A100芯片,以及A30、A40、A10和T4处理器。
此外戴尔今天也宣布推出了Dell EMC VxRail,这是第一款被认证为Nvidia-Certified System for Nvidia AI的超融合平台。
Das表示,Nvidia已经与Domino Data Lab展开进一步合作,以验证Nvidia AI Enterprise 上运行的Domino Enterprise MLOps平台,让企业可以选择将一种更有条理化的方法集成可以直接调用到VMware中的机器学习中。
Domino数据实验室首席执行官Nick Elprin解释说:“我们正在深化我们的产品集成,让Domino Enterprise MLOps平台能够支持更广泛的Nvidia GPU,并针对Nvidia AI Enterprise对其进行验证。这款新产品将帮助数十万企业大规模加速数据科学。”
Nvidia表示,来自汽车、教育、金融、医疗、制造和高科技等行业的数十家企业此前已经在使用Nvidia Enterprise AI平台了,他们将成为围绕对话式AI、计算机视觉、推荐系统打造和部署应用的早期客户。
比萨大学(University of Pisa)正在使用该平台支持跨多个学科的高性能计算和AI训练以推进科学研究。该大学表示,Nvidia Enterprise AI平台让这些应用更易于部署和管理,从而为那些依赖数据分析和深度学习的研究人员和学生提供支持。
比萨大学首席技术官Maurizio Davini表示:“我们的测试表明,Nvidia和VMware的这些最新合作成果以接近裸机的速度,发挥了我们GPU加速虚拟化基础设施的全部潜力。”
Nvidia方面表示,Nvidia Enterprise AI平台现已在全球范围内通过渠道合作伙伴进行销售。价格为每年每个CPU插槽起价2,000美元,提供商业标准支持。永久许可价格为每年3595美元,如需额外支持则需要另外购买。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。