Nvidia与VMware长达一年的合作终于取得了成果,今天正式推出了Nvidia AI Enterprise 平台,这是一套AI工具和框架,可以虚拟化AI工作负载并在Nvidia认证的服务器系统上运行这些负载。

Nvidia表示,Nvidia AI Enterprise将让企业能够运行新型AI工作负载,并通过单一平台对其进行管理,此外还可以让企业在靠近数据所在位置的地方部署支持AI的基础设施,无论是在云中、数据中心还是网络边缘。
Nvidia AI Enterprise的关键组件之一是Nvidia GPU Cloud,这是一个针对深度学习和高性能计算的优化软件工具目录,依赖Nvidia GPU的强大性能。Nvidia解释说,通过将这些工具与VMware vSphere集成,企业可以更轻松地在现有服务器上部署AI工作负载。
Nvidia企业计算主管Manuvir Das在新闻简报会上表示,Nvidia AI Enterprise的推出是AI新篇章的开始。他说,现在全球数以千计的企业采用了Nvidia软件,他们利用主流服务器在VMware上运行工作负载。以前,AI工作负载需要专门的基础设施,而现在这个情况完全改变了。
Das说:“Nvidia AI已经面向所有企业准备就绪了。现在,所有企业功能都被融入了AI。”
Nvidia表示,Nvidia AI Enterprise平台可以在VMware vSphere上运行AI工作负载,运行在来自戴尔、HPE、浪潮、联想、技嘉和超微销售的认证系统上。这些厂商售卖的系统采用了一系列Nvidia GPU,包括最先进的A100芯片,以及A30、A40、A10和T4处理器。
此外戴尔今天也宣布推出了Dell EMC VxRail,这是第一款被认证为Nvidia-Certified System for Nvidia AI的超融合平台。
Das表示,Nvidia已经与Domino Data Lab展开进一步合作,以验证Nvidia AI Enterprise 上运行的Domino Enterprise MLOps平台,让企业可以选择将一种更有条理化的方法集成可以直接调用到VMware中的机器学习中。
Domino数据实验室首席执行官Nick Elprin解释说:“我们正在深化我们的产品集成,让Domino Enterprise MLOps平台能够支持更广泛的Nvidia GPU,并针对Nvidia AI Enterprise对其进行验证。这款新产品将帮助数十万企业大规模加速数据科学。”
Nvidia表示,来自汽车、教育、金融、医疗、制造和高科技等行业的数十家企业此前已经在使用Nvidia Enterprise AI平台了,他们将成为围绕对话式AI、计算机视觉、推荐系统打造和部署应用的早期客户。
比萨大学(University of Pisa)正在使用该平台支持跨多个学科的高性能计算和AI训练以推进科学研究。该大学表示,Nvidia Enterprise AI平台让这些应用更易于部署和管理,从而为那些依赖数据分析和深度学习的研究人员和学生提供支持。
比萨大学首席技术官Maurizio Davini表示:“我们的测试表明,Nvidia和VMware的这些最新合作成果以接近裸机的速度,发挥了我们GPU加速虚拟化基础设施的全部潜力。”
Nvidia方面表示,Nvidia Enterprise AI平台现已在全球范围内通过渠道合作伙伴进行销售。价格为每年每个CPU插槽起价2,000美元,提供商业标准支持。永久许可价格为每年3595美元,如需额外支持则需要另外购买。
好文章,需要你的鼓励
还在为渲染一个3D模型等上几小时吗?还在纠结移动办公就得牺牲性能吗?当AI遇上专业工作站,传统设计流程的游戏规则正在被改写。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。