HPE今天宣布已经收购Ampool,该公司的开源查询加速平台可用于商业智能场景中。
HPE没有透露此次收购的价格信息。HPE在一篇博客文章中表示,Ampool的可扩展数据联合层和多层加速引擎将提供一个云原生的SQL分析引擎,并将成为HPE Ezmeral边缘到云分析运行时的一个组成部分,用于交互式SQL工作负载。
Ampool还将给HPE带来几位曾经在雅虎、LinkedIn、VMware Pivotal和Veritas工作的工程师,同时他们也是Apache Geode、Presto/Trino、Apache Spark和Apache Ranger等项目的主要贡献者。
HPE Ezmeral业务总经理Anant Chintamaneni在博客中这样写道:“现有的本地SQL工具是死板、速度很慢且和特定底层存储技术例如HDFS捆绑在一起的。企业组织需要一组松散耦合的云原生查询引擎,支持针对各种后端数据源的多种分析和商业智能工具。”
Ampool利用内存缓存将运行在AWS Amazon Elastic MapReduce大数据处理服务上的性能提高多达40倍,并将在Tableau数据可视化平台上查询的速度提高多达100倍。
该公司表示,Ampool Active Data Store是基于Apache Geode分布式内存数据库的,支持来自单个以内存为中心的存储的流获取、批处理、事务型和交互型/即席查询。HPE计划利用Ampool进一步专注于SQL运行时,尤其是那些针对开源Presto分布式分析平台和非特定独立软件产品的运行时。
“使用多个基于容器的临时SQL计算引擎——例如Presto和Spark,往往需要在外部存储和管理持久元数据。Ampool在构建带有角色访问控制的共享元数据目录方面,拥有深厚的专业知识,可提供对不同后端数据源的一致视图,”Chintamaneni这样写道。
根据Crunchbase的信息显示,Ampool成立于2015年,在印度圣克拉拉和浦那设有办事处,到目前为止已经筹集了40万美元的种子资金。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。