美国东部时间6月30日,国际权威AI基准测试MLPerf™公布最新一期榜单。在集群封闭任务赛道中,谷歌与NVIDIA各自获得4项第一;在单机封闭任务赛道中,浪潮获全部8项训练任务的4项冠军,NVIDIA、Nettrix各获得2项任务冠军。
MLPerf™由图灵奖得主大卫•帕特森(David Patterson)联合谷歌、斯坦福、哈佛大学等顶尖学术机构发起成立,是影响力最广的国际AI性能基准评测。此次性能评测基于最新MLPerf™ Training V1.0基准,分为固定任务(Closed)和开放任务(Open)。其中,固定任务要求使用相同模型和优化器,衡量同一深度学习模型在不同软硬件上的性能,广受厂商和客户看重;开放任务则放开对深度学习模型及精度的约束,侧重深度学习模型及算法优化的能力,旨在推进ML模型和优化的创新。
MLPerf™V1.0基准测试涵盖了8类极具代表性的机器学习任务,分别为图像识别(ResNet)、医学影像分割(U-Net3D)、目标物体检测(SSD)、目标物体检测(Mask R-CNN)、语音识别(RNN-T)、自然语言理解(BERT)、智能推荐(DLRM)以及强化机器学习(MiniGo)。其中,ResNet50和BERT作为计算机视觉和自然语言理解中最具代表性的AI模型,竞争最为激烈。
包括谷歌、NVIDIA、Intel、浪潮、戴尔、联想等在内的13家公司及科研机构,参与了此次MLPerf™封闭任务赛道测试。
谷歌与NVIDIA在集群系统测试中展开激烈冠亚军争夺,最终谷歌获得了ResNet、SSD、BERT和DLRM四项任务的第一,NVIDIA则夺得U-Net3D、Mask R-CNN、RNN-T和MiniGo四项任务冠军,双方平分秋色。在单机系统测试中浪潮获得ResNet、SSD、BERT和DLRM四项任务的冠军,NVIDIA获得RNN-T和MiniGo两项第一,Nettrix获得U-Net3D、Mask R-CNN两项第一。
作为业内最权威的AI基准测试,每一次MLPerfTM评测结果都在刷新业内纪录,不断突破AI系统性能。和2020年榜单相比,今年榜单的各项任务测试成绩均有明显提升。在集群训练上,Google在ResNet模型训练任务中以0.23分钟打破2020年创下的0.47分钟纪录,耗时缩短51%;在Bert模型任务中Google以0.29分钟完成训练,相比2020年0.39分钟的最佳纪录,用时缩短26%。
在单机性能上,浪潮同样在备受关注的ResNet和BERT上取得了新突破,创下单机27.38分钟完成128万张图片训练BERT模型的新纪录,比2020年最佳纪录耗时缩短18%;在BERT模型训练中,浪潮以21.15分钟打破2020年最佳成绩49.01分钟,用时缩短57%。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。