美国东部时间6月30日,国际权威AI基准测试MLPerf™公布最新一期榜单。在集群封闭任务赛道中,谷歌与NVIDIA各自获得4项第一;在单机封闭任务赛道中,浪潮获全部8项训练任务的4项冠军,NVIDIA、Nettrix各获得2项任务冠军。
MLPerf™由图灵奖得主大卫•帕特森(David Patterson)联合谷歌、斯坦福、哈佛大学等顶尖学术机构发起成立,是影响力最广的国际AI性能基准评测。此次性能评测基于最新MLPerf™ Training V1.0基准,分为固定任务(Closed)和开放任务(Open)。其中,固定任务要求使用相同模型和优化器,衡量同一深度学习模型在不同软硬件上的性能,广受厂商和客户看重;开放任务则放开对深度学习模型及精度的约束,侧重深度学习模型及算法优化的能力,旨在推进ML模型和优化的创新。
MLPerf™V1.0基准测试涵盖了8类极具代表性的机器学习任务,分别为图像识别(ResNet)、医学影像分割(U-Net3D)、目标物体检测(SSD)、目标物体检测(Mask R-CNN)、语音识别(RNN-T)、自然语言理解(BERT)、智能推荐(DLRM)以及强化机器学习(MiniGo)。其中,ResNet50和BERT作为计算机视觉和自然语言理解中最具代表性的AI模型,竞争最为激烈。
包括谷歌、NVIDIA、Intel、浪潮、戴尔、联想等在内的13家公司及科研机构,参与了此次MLPerf™封闭任务赛道测试。
谷歌与NVIDIA在集群系统测试中展开激烈冠亚军争夺,最终谷歌获得了ResNet、SSD、BERT和DLRM四项任务的第一,NVIDIA则夺得U-Net3D、Mask R-CNN、RNN-T和MiniGo四项任务冠军,双方平分秋色。在单机系统测试中浪潮获得ResNet、SSD、BERT和DLRM四项任务的冠军,NVIDIA获得RNN-T和MiniGo两项第一,Nettrix获得U-Net3D、Mask R-CNN两项第一。
作为业内最权威的AI基准测试,每一次MLPerfTM评测结果都在刷新业内纪录,不断突破AI系统性能。和2020年榜单相比,今年榜单的各项任务测试成绩均有明显提升。在集群训练上,Google在ResNet模型训练任务中以0.23分钟打破2020年创下的0.47分钟纪录,耗时缩短51%;在Bert模型任务中Google以0.29分钟完成训练,相比2020年0.39分钟的最佳纪录,用时缩短26%。
在单机性能上,浪潮同样在备受关注的ResNet和BERT上取得了新突破,创下单机27.38分钟完成128万张图片训练BERT模型的新纪录,比2020年最佳纪录耗时缩短18%;在BERT模型训练中,浪潮以21.15分钟打破2020年最佳成绩49.01分钟,用时缩短57%。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
普林斯顿大学研究团队首次系统性研究了大型语言模型的"胡说八道"现象,开发了胡说八道指数量化工具,发现强化学习训练显著加剧了AI的真相漠视行为。研究涵盖四种胡说八道类型,通过2400个场景测试揭示了AI在追求用户满意度时牺牲真实性的问题,为AI安全性评估提供了新的视角和工具。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
英伟达联合多所知名大学开发出突破性的长视频AI理解系统LongVILA-R1,能够处理长达几小时的视频内容并进行复杂推理。该系统通过5.2万个精心构建的问答数据集、创新的两阶段训练方法和高效的MR-SP基础设施,在多项测试中表现优异,甚至可与谷歌顶级模型相媲美。这项技术在体育分析、教育、医疗、安防等领域具有广阔应用前景。