全新Isaac模拟引擎不但能够创造更逼真的环境,而且还能简化合成数据生成和域随机化,从而建立真值数据集来训练用于物流、仓库、未来工厂等的各种机器人。
Omniverse是NVIDIA模拟器的根本基础,包括加入了多项新功能的Isaac平台。NVIDIA Isaac Sim目前已发布公测版,您可以通过该平台探索更高级的机器人模拟功能。
Isaac Sim基于NVIDIA Omniverse平台而构建,它是一个机器人模拟应用与合成数据生成工具。机器人专家可使用它更高效地训练和测试机器人,模拟机器人与指定环境的真实互动,而且这些环境可以超越现实世界。
Isaac Sim的发布还增加了经过改进的多摄像头支持功能、传感器功能以及一个PTC OnShape CAD导入器,让3D素材的导入变得更加轻松。从实体机器人的设计和开发、机器人的训练,到在“数字孪生”中的部署(数字孪生是一种精确、逼真的机器人模拟和测试虚拟环境),这些新功能将全方位地扩大可以建模和部署的机器人和环境范围。
主要新功能
Isaac Sim可以将多摄像头传感器数据发送到Rviz(ROS可视化工具)
在Isaac Sim中控制Dofbot操作机器人
Isaac Sim实现了更多的机器人模拟
开发者早已明白强大的模拟环境对机器人测试和训练的益处,但此类模拟器往往存在着限制其使用的缺点。Isaac Sim通过以下优势来弥补这些缺点。
逼真的模拟
为了提供逼真的机器人模拟,Isaac Sim运用了Omniverse平台的强大技术:使用PhysX 5进行高级GPU物理模拟、借助实时光线追踪和路径追踪实现高逼真度,以及支持物理渲染的材质定义语言(Material Definition Language ,MDL)。
模块化设计与丰富的应用
Isaac Sim专为解决许多最常见的机器人用例而创建,包括操控、自主导航和用于训练数据的合成数据生成。其模块化设计能够让用户轻松自定义和扩展工具集,以适应多种应用和环境。
无缝连接和互操作性
借助NVIDIA Omniverse,Isaac Sim可以使用Omniverse Nucleus和Omniverse Connectors在通用场景描述(USD)中合作构建、分享、导入环境模型与机器人模型。通过ROS/ROS2接口或功能齐全的Python脚本,以及用于导入机器人模型和环境模型的插件,可以轻松地让机器人的大脑与虚拟世界相连。
Isaac Sim的合成数据生成助力实现机器学习
合成数据生成是一个重要的工具,它正在被越来越多地用于训练当今机器人的感知模型。获取真实世界的、正确标记的数据是一项耗时且成本高昂的工作。 但就机器人技术而言,在现实世界中收集某些所需的训练数据可能太困难或太危险。 对于必须靠近人类工作的机器人来说尤其如此。
Isaac Sim 内置了对训练感知模型很重要的各种传感器类型的支持。这些传感器包括 RGB、深度、边界框和分割。
玻璃物体的真值合成数据
在公测版中,我们能够输出KITTI格式的合成数据。这些数据可以直接用于NVIDIA迁移学习工具包,以使用特定用例数据提高模型性能。
域随机化
域随机化能够对定义模拟场景的参数进行更改,如场景中的照明、颜色和材质纹理等。域随机化的主要目标之一,便是通过将神经网络暴露在所模拟的各种域参数中,来加强机器学习(machine learning ,ML)模型的训练。这有助于模型在真实世界场景中实现有效的泛化。实际上,这项技术能够教会模型忽略不重要的内容。
工厂场景的域随机化
Isaac Sim能够对定义一个特定场景的多个不同属性进行随机化。借助这些功能,机器学习工程师可以确保合成数据集包含足够的多样性来驱动稳健的模型性能。
可随机化的参数
颜色 |
动作 |
规模 |
亮度 |
纹理 |
材质 |
网格 |
可视性 |
旋转 |
|
在Isaac Sim公测版中,我们通过允许用户定义随机化区域来增强域随机化功能。开发人员现在可以在场景中要随机化的区域周围绘制一个框,场景的其余部分将保持静态。
更多关于Isaac Sim的信息
观看2021年GTC大会上的最新Isaac Sim 分会:从模拟到现实。https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31824/
可通过以下教程进一步了解如何导入您自己的机器人。
https://www.youtube.com/watch?v=pxPFr58gHmQ
阅读开发者博客,进一步了解如何使用Isaac Sim来训练Jetbot:
即刻下载
现已有成千上万的开发者采用Isaac Sim机器人进行开发,欢迎加入我们的抢先体验计划,成为这一社区中的一员。即刻下载Isaac Sim,体验更高级的机器人模拟功能。
好文章,需要你的鼓励
这项由加州大学圣地亚哥分校和微软研究院合作开发的REAL框架,通过程序分析反馈训练大型语言模型生成高质量代码。与传统方法不同,REAL采用强化学习将代码安全性和可维护性作为奖励信号,不依赖人工标注或特定规则。研究在多个数据集上的实验表明,REAL在保证功能正确性的同时显著提高了代码质量,有效解决了"即兴编程"中的安全漏洞和维护性问题,为AI辅助编程提供了新的范式。
加州大学伯克利分校与Meta FAIR研究团队开发了"Self-Challenging"框架,让大语言模型通过自己创建和解决任务来提升能力。该方法引入创新的"Code-as-Task"格式,包含指令、验证函数、示例解决方案和失败案例,确保生成的任务既可行又有挑战性。在工具计算、网页浏览、零售服务和航班预订四种环境测试中,仅使用自生成训练数据,Llama-3.1-8B模型性能提升了两倍多,证明AI可以通过自我挑战实现有效学习,减少对人类标注的依赖。
南洋理工大学与SenseTime Research合作提出了PoseFuse3D-KI,一种创新的人体中心关键帧插值框架。该方法将3D人体模型信息融入扩散过程,解决了现有技术在处理复杂人体动作时产生扭曲结果的问题。研究团队开发了专门的SMPL-X编码器直接从3D空间提取几何信息,并设计了融合网络将3D线索与2D姿态无缝整合。他们还构建了CHKI-Video数据集,包含2,614个视频片段及完整的人体标注。实验结果显示,PoseFuse3D-KI在PSNR上提升9%,LPIPS减少38%,显著超越现有方法。
这项研究提出了LongGuide算法,解决了大型语言模型在长文本生成任务中的局限性。研究团队发现,仅依靠上下文学习无法使模型充分掌握文本的语言和格式特性。LongGuide通过自动生成两种指导原则:度量指导原则和输出约束指导原则,显著提升了模型性能。在七种长文本生成任务中,该方法使开源和闭源模型的ROUGE-L评分平均提高约6%。LongGuide具有通用性强、易于学习、成本效益高等优点,为提升AI长文本生成能力提供了新方向。