在本系列上一篇文章中,我们带领大家调节了 CSI 图像质量。在本篇文章中,我们将带领大家了解 Jetson Nano 2GB 的颜色空间动态调节技巧。
HSV 色彩空间是计算机视觉领域应用频率非常高的颜色模型,主要有 Hue(色调)、Saturation(饱和度)与 Value(值)三者组合而成,与一般比较熟悉的 RGB 或 BGR 像点值组成颜色的方式是完全不同的。
在前面做过的“追踪特定颜色物件”实验中,必须不断修改代码中的某些值,然后重复执行代码去确认这些值的正确性,这对于某个特定颜色来说还勉强可以用用,但如果需要动态地对多种颜色进行识别的话,那可就令人头痛了。
因此本文特别提供一个简单工具,结合 OpenCV 的 createTaskbar 与 getTrackbarPos 这两个功能,协助初学者掌握颜色变化时的各项参数。
创建 BGR 色彩空间调色板
首先以人类习惯的 BGR 颜色空间为例,创建一个最简单的调色板,完整代码如下:
执行的结果如下图,用鼠标滑动 B/G/R 的值,下面色块会根据上面三个值的组合进行实时调整。
这是个非常简单而且实用的工具。接下来我们将 BGR 颜色空间修改成 HSV 颜色空间,因为大部分计算机视觉的应用,是采用 HSV 颜色空间进行转换。
创建 HSV 色彩空间调色板
关于 HSV 的原理,请自行百度上参考其细节,这里只挑与代码有关的部分简单说明。
在 Hue 色调部分由于有个上下限的范围,执行结果就会出现如下图的调色板,可用鼠标调整每个数值。不过到此只是显示这个调色板,还不具备任何功能。
使用 HSV 色彩空间调色板
接下去将前面“追踪特定颜色物件”代码集成进来,最终目的是利用这个调色板对特定颜色进行过滤(追踪)的功能,主要步骤如下(代码见“粗体底线”部分):
执行后的显示结果如下,左边是原图,中间是调色板,右边是调整后筛选的颜色:
利用鼠标调节中间调色板的各项数值,然后右边的结果就会立即产生变化:
以上色彩空间调色板的制作,应该会对您有所帮助。
好文章,需要你的鼓励
这项研究由浙江大学、复旦大学等机构联合完成,提出了ReVisual-R1模型,通过创新的三阶段训练方法显著提升了多模态大语言模型的推理能力。研究发现优化的纯文本冷启动训练、解决强化学习中的梯度停滞问题、以及分阶段训练策略是关键因素。ReVisual-R1在各类推理基准测试中超越了现有开源模型,甚至在某些任务上超过了商业模型,为多模态推理研究开辟了新途径。
这项研究提出了一种名为"批评式微调"的创新方法,证明仅使用一个问题的批评数据就能显著提升大语言模型的推理能力。研究团队对Qwen和Llama系列模型进行实验,发现这种方法在数学和逻辑推理任务上都取得了显著提升,平均提高15-16个百分点,而且只需要强化学习方法1/20的计算资源。这种简单高效的方法为释放预训练模型的潜在推理能力提供了新途径。
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。