在本系列上一篇文章中,我们为大家展示了如何通过 OpenCV 调用 CSI/USB 摄像头,在本篇文章中,我们将向大家介绍如何执行常见机器视觉应用。
在上一篇文章中,已经简单说明了图像处理与计算机视觉的差异,并且在 Jetson Nano 2GB 上,结合 CSI 摄像头与 JetPack 所提供的 OpenCV 4.1.1 版本,实现了三种最基础的应用。每个 Python 代码都只需要 10+ 行就可以,让大家轻松感受到 Jetson Nano 2GB 的开发便利性。
本篇内容主要是在 Jetson Nano 2GB 上运用 OpenCV,执行三个有特色的计算机视觉应用,这部分会很频繁的运用到色彩空间(color space)转换技巧,在 OpenCV 上只需要一道“cv2.cvtColor()”指令就可以实现,非常简单。
接下来就开始本文的实验内容。
追踪特定颜色物件
本范例追踪“绿色”物体,执行步骤如下:
先找出“绿色”的 HSV 颜色范围,本处定在[50,100,100]至[70,255,255]
将读入的图像(frame)透过 cv2.cvtColor() 转成 HSV 格式,存到 hsv 变量
用 cv2.inRange() 函数找出 hsv 的掩码,存到 mask 变量
用 cv2.bitwize_and() 函数将 frame 与 mask 进行 AND 计算,过滤掉“非绿”部分,将结果存到 detect 变量
将原图(frame)、掩码(mask)与结果(detect) 显示在画面上
执行结果如下:
边缘检测(Edge Detection)
执行步骤如下:
这个计算必须将图像转成灰度图像,才能计算出每个物件的边缘线条
将读入的图像(frame)透过 cv2.cvtColor 转成 HSV 灰度图像,存到 hsv 变量
为了降低图形的噪点,因此需要将 HSV 灰度图进行高斯模糊(降噪)处理,直接调用 cv2.GaussianBlur() 函数进行转换,将图像存到 blur 变量中
最后调用 cv2.Canny() 函数为 blur 图像找出边际线条,存入 edges 变量中
为了显示过着中所有图像,因此先将每张图像都调整尺寸为(640,480),然后执行三次 np.concatenate() 函数,将四张图像集成为一张,便于显示。
执行结果如下:
人脸追踪+眼睛追踪
这个代码调用 OpenCV 自带的 HaarCascade 算法分类器,调用方式也很简单,需要指定脸部分类器(classifier)的位置,在 /usr/local/share/opencv4/haarcascades 下面,里面提供将近 20 种分类器,可以按照需求变更。
这个范例也将“眼睛”识别分类器放进去,并且嵌套在脸部识别的循环里面,因为眼睛一定在脸里面,这样可以做的更丰富些。
详细代码如下:
执行结果如下:蓝色框代表找到的“脸”,绿色框表示“眼睛”。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。