在本系列上一篇文章里,我们为大家介绍了 Jetson Nano 2GB 安装 CSI 摄像头的方法,以及最基础的启动指令。在本篇文章中,我们将向大家展示如何通过 OpenCV 调用 CSI/USB 摄像头。
本期我们会带着大家使用这个摄像头,执行一些很实用的图像处理(image processing)应用,至于计算机视觉(computer vision)的应用,将在下一期里带着大家一起操作。
什么是图像处理?什么又是计算机视觉?如果您有所混淆的话,这里先做个基本说明,二者之间的区隔还是很明显的:
图像处理:输入为图像,输出也是图像
过程中对于图形进行一些应用处理,例如颜色空间(color space)转换、图像格式转换、尺寸转换、角度转换、图像合成等操作,最基本的就是将摄像头的图像读入,显示在屏幕上,并写入磁盘,这就形成一个最简单的录像功能。
计算机视觉:输入为图像,输出为信息
在输入的图像/视频中,找到特定信息的技术,例如基于颜色的追踪、物体边缘的检测、将图像的像素转成信号直方图(histogram)等计算,甚至于车道查找(lane finding)、人脸检测(face detection)等,都属于计算机视觉的范畴,其输入为一张图像,但输出的是某类从图像中淬炼出来的信息。
在 Jetson Nano 2GB 搭建的 JetPack 4.4.1 版本里,内建 OpenCV 4.1.1 版本的开发环境,这是目前图像处理、计算机视觉领域使用率最高的开发工具,因此我们就用 OpenCV 搭配 CSI 摄像头来做图像处理项目。
这里使用 Jetson Nano 2GB 的自带的 gedit 全文编辑器来撰写代码,编程语言使用 Jetson Nano 2GB 预安装的 Python 3.6 版本,由于相关所需的开发环境都已经由 JetPack 4.4.1 完整提供,因此不需要再执行额外的安装,非常简便。
我们可以将视频数据认知为由连续的图像所组合,因此在这里全部以视频处理作为示范,比较动态。至于图像的处理方式,请自行调整代码,二者之间的差异主要在写入磁盘以及是否需要循环指令的部分,如下表:
实现摄像头录像功能
这个功能主要执行三个动作:
从摄像头读入图像
给定文件名
写入磁盘中
这些动作在 OpenCV 都有非常简单的对应指令可以操作,详细代码如下:
本代码以“ESC”键结束录像。
将读入的图像执行缩放
这个功能主要执行三个动作:
摄像头读入图像
调用 cv2.resize 函数进行图像尺寸改变,选择插值方式(cv2.INTER_NEAREST)
在屏幕上显示
完整代码如下:
本代码以“ESC”键结束录像。
将读入的图像执行旋转
这个功能主要执行 4 个动作:
从摄像头读入图像
找出图像中心点
调用 cv2.getRotationMatrix2D() 函数进行旋转
显示:本范例显示 90 度/ 180 度/ 270 度
详细代码如下:
本代码以“ESC”键结束录像。
本文介绍了 3 种在 Jetson Nano 2GB 上,结合 CSI 摄像头与 OpenCV 做的很实用的图像处理应用,应该很容易上手。后面将为您介绍几个常用的计算机视觉应用情况。
好文章,需要你的鼓励
TechCrunch Disrupt 2025 AI舞台将汇聚塑造科技未来的领军人物,顶尖风投将揭示在快速变化的AI领域获得融资的关键。来自Apptronik、ElevenLabs、Hugging Face、Runway等创新企业的领导者将分享前沿洞见,探讨AI如何重塑创意过程、改变物理世界、变革国防安全和重新定义人际关系。10月27-29日,五大主题舞台将在旧金山呈现科技创新的未来图景。
西班牙研究团队提出了一种创新的AI自我纠错方法SSC,让人工智能学会识别和修正规则中的漏洞。当AI发现自己在钻空子获得高分时,它会反思规则的合理性并主动改进。实验显示这种方法将AI的"钻空子"行为从50-70%降低到3%以下,同时提升了回答质量。这项技术有望让AI从被动执行指令转变为能够质疑和改进指令的智能协作伙伴。
英超联赛与微软达成五年战略合作伙伴关系,推出AI驱动的Premier League Companion服务,为全球球迷提供个性化体验。该服务利用Azure OpenAI技术,整合30多个赛季的统计数据、30万篇文章和9000个视频,帮助球迷发现和了解更多内容。未来还将为Fantasy Premier League引入个人助理经理功能,并通过Azure AI优化比赛直播体验和赛后分析。
这篇文章详细解析了Long、Shelhamer和Darrell在2015年CVPR会议上发表的开创性研究"全卷积网络用于语义分割"。文章以通俗易懂的方式,将这项复杂的技术比作艺术家的绘画过程,解释了如何让计算机不仅识别图像中有什么物体,还能精确标出每个物体的位置和边界。研究团队通过将传统分类网络改造为全卷积形式,并巧妙运用上采样和跳跃连接技术,实现了高效准确的像素级图像理解。这一突破为自动驾驶、医学影像和增强现实等领域带来了革命性变化,奠定了现代计算机视觉的重要基础。