Nvidia今天公布了第一批所谓的“ Nvidia认证系统”,主要针对那些希望大规模运行人工智能工作负载的企业组织。
Nvidia表示,已经与戴尔、HPE、技嘉、浪潮、超微等服务器制造商展开合作,为这些这些系统进行认证证明其符合最佳设计实践,并可以为最高级的机器学习和数据分析任务提供最佳性能。
这些新系统将采用Nvidia最高端的A100 GPU,并配合Mellanox高速网络适配器,为企业在企业数据中心内或者网络边缘运行AI工作负载提供更多不同选择。
Nvidia GPU云产品管理总监Adel El Hallak在新闻发布会上表示:“人工智能已经成为主流”,客户正在寻找有保障的功能、性能、可扩展性和安全性。
El Hallak说:“大规模部署AI很难,到目前为止都还是手动操作的。”他补充说,这些新认证的系统将有助于“将以前很复杂的东西变成交钥匙型方案”。
Nvidia解释说,每个经过认证的系统都已经在各种AI工作负载上进行了测试,从需要多个计算节点的工作负载,到只需要单个GPU一小部分资源的工作负载,其中每一个都经过了优化,可以运行Nvidia NGC目录中的AI应用(该目录针对GPU优化AI应用的中心)。
Nvidia解释说,这次认证涉及使用NGC目录中最受欢迎的AI框架对AI工作负载进行测试,包括深度学习训练和推理、机器学习算法、智能视频分析、网络和存储的卸载等等。
El Hallak说:“我们正在对人们实际使用的工作负载进行测试,而且测试规模是很大的。“
Constellation Research分析师Holger Mueller表示,Nvidia的软硬件都在AI方面逐步取得成功,“认证系统”正式一种典型的、行之有效的策略。
Mueller说:“企业高管喜欢得到平台认证的系统,因为这样可以确保可行性和可迁移性。更重要的是,这让企业有可能以一种面向未来的方式在本地运行AI,因为Nvidia设法在所有主流公有云中也都支持Nvidia的平台。这促使Nvidia成为一种AI的计算平台,从而为下一代应用实现了本地系统和公有云之间的工作负载可迁移性。”
Nvidia表示,截止发布时已经有14款系统通过认证可提供加速计算,包括Dell EMC PowerEdge R7525和R740机架服务器;技嘉R281-G30、R282-Z96、G242-Z11、G482-Z54、G492-Z51系统;HPE Apollo 6500 Gen10系统和HPE ProLiant DL380 Gen10服务器;浪潮NF5488A5服务器以及Supermicro A+Server AS -4124GS-TNR和AS -2124GQ-NART。
这些系统中的每一款都带有“Nvidia认证系统”的标识,证明它们是符合Nvidia最佳设计规范的,可以处理最苛刻的AI工作负载。在整个软件堆栈中都可获得企业支持,包括对开源代码的支持。
Nvidia表示,目前有来自11个系统制造商的约70个系统正在参与该计划,预计不久将宣布更多经过Nvidia认证的系统。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。