全新NVIDIA应用研究加速器计划(Applied Research Accelerator Program)助力研究人员将学术实验室里的AI研究应用于企业中。
学术研究人员正在通过开发和使用AI,解决从农业机器人到自主飞行器等领域的各种难题。
为了将此类AI研究应用于商业或政府中,而非仅作为学术成果,NVIDIA于近日发布应用研究加速器计划,为借助NVIDIA平台进行GPU加速应用部署的应用研究提供支持。
应用研究加速器计划最初会聚焦于机器人技术及自主机器领域,并在接下来几个月内扩展至数据科学、自然语言处理、语音和会话式AI等其他领域。
据IDC估计,到2023年,全球机器人系统和无人机领域相关支出将增至2414亿美元,较针对 2020 年预计的1287亿美元提升88%。
这项新计划将帮助研究人员及其合作机构推广在NVIDIA AI软硬件平台上开发的新一代应用程序,包括Jetson平台、NVIDIA Isaac以及DeepStream软件开发套件。
除了进行交流和市场宣传的机会之外,NVIDIA还将为开展合作的研究人员和机构提供技术指导、硬件捐赠、资金、资助申请帮助以及AI训练计划方面的支持。
NVIDIA现在正在将部分研究人员和企业开发的应用程序纳入该计划。这些研究人员致力于将机器人技术和AI应用于自动化系统中,而这些企业则希望将新的技术推向市场。
加速并部署AI研究
NVIDIA 应用研究加速器计划的首批参与者已经展示了值得进一步开发的AI技术能力。
应用研究加速器计划权益
当学术研究人员能够验证AI在实际应用中具有可行性时,NVIDIA能够为其提供硬件捐赠及资金,还可以为研究人员提交的第三方资助申请提供佐证书。
应用研究加速器计划成员还将获得NVIDIA GPU(包括Jetson)的相关技术指南访问权限。
这项新计划的成员还有机会参加深度学习学院(Deep Learning Institute)培训课程,以获取关于特定AI应用的详细信息。
NVIDIA还为研究人员提供在GTC大会上进行展示和交流的机会。
好文章,需要你的鼓励
Anchor Browser获得600万美元种子轮融资,专注解决AI代理安全可靠地使用网络的挑战。该公司重新设计浏览器作为云端执行层,为每个AI代理提供独立安全的浏览器环境。与传统浏览器不同,Anchor的b0.dev系统让代理能够规划工作流程并可靠重复执行,将混乱的自动化转变为企业级软件工程。
清华大学研究团队开发的SLA技术通过将AI视频生成中的注意力权重智能分类,对不同重要程度的权重采用差异化计算策略,成功实现了95%的计算量减少和20倍的速度提升,同时保持视频质量不变,为AI视频生成效率优化开辟了新思路。
英国竞争与市场管理局经过九个月调查,将谷歌和苹果的移动平台指定为具有战略市场地位。监管机构表示,两家公司在移动平台领域拥有根深蒂固的市场主导地位,其平台规则可能限制创新和竞争。这一指定使监管机构能够考虑采取针对性干预措施,确保英国应用开发者能够创新和发展业务,但目前尚未引入任何直接要求。
斯坦福大学等机构联合提出多人Nash偏好优化(MNPO),突破传统双人训练局限,让AI在多人游戏环境中学习处理复杂非传递性偏好。该方法通过时间依赖设计,让AI与历史版本对话练习,在所有主要测试中显著超越现有方法,在Arena-Hard中甚至超过GPT-5,为AI对话系统训练提供了更贴近真实世界复杂性的新范式。