全新NVIDIA应用研究加速器计划(Applied Research Accelerator Program)助力研究人员将学术实验室里的AI研究应用于企业中。

学术研究人员正在通过开发和使用AI,解决从农业机器人到自主飞行器等领域的各种难题。
为了将此类AI研究应用于商业或政府中,而非仅作为学术成果,NVIDIA于近日发布应用研究加速器计划,为借助NVIDIA平台进行GPU加速应用部署的应用研究提供支持。
应用研究加速器计划最初会聚焦于机器人技术及自主机器领域,并在接下来几个月内扩展至数据科学、自然语言处理、语音和会话式AI等其他领域。
据IDC估计,到2023年,全球机器人系统和无人机领域相关支出将增至2414亿美元,较针对 2020 年预计的1287亿美元提升88%。
这项新计划将帮助研究人员及其合作机构推广在NVIDIA AI软硬件平台上开发的新一代应用程序,包括Jetson平台、NVIDIA Isaac以及DeepStream软件开发套件。
除了进行交流和市场宣传的机会之外,NVIDIA还将为开展合作的研究人员和机构提供技术指导、硬件捐赠、资金、资助申请帮助以及AI训练计划方面的支持。
NVIDIA现在正在将部分研究人员和企业开发的应用程序纳入该计划。这些研究人员致力于将机器人技术和AI应用于自动化系统中,而这些企业则希望将新的技术推向市场。
加速并部署AI研究
NVIDIA 应用研究加速器计划的首批参与者已经展示了值得进一步开发的AI技术能力。
应用研究加速器计划权益
当学术研究人员能够验证AI在实际应用中具有可行性时,NVIDIA能够为其提供硬件捐赠及资金,还可以为研究人员提交的第三方资助申请提供佐证书。
应用研究加速器计划成员还将获得NVIDIA GPU(包括Jetson)的相关技术指南访问权限。
这项新计划的成员还有机会参加深度学习学院(Deep Learning Institute)培训课程,以获取关于特定AI应用的详细信息。
NVIDIA还为研究人员提供在GTC大会上进行展示和交流的机会。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。