全新NVIDIA应用研究加速器计划(Applied Research Accelerator Program)助力研究人员将学术实验室里的AI研究应用于企业中。

学术研究人员正在通过开发和使用AI,解决从农业机器人到自主飞行器等领域的各种难题。
为了将此类AI研究应用于商业或政府中,而非仅作为学术成果,NVIDIA于近日发布应用研究加速器计划,为借助NVIDIA平台进行GPU加速应用部署的应用研究提供支持。
应用研究加速器计划最初会聚焦于机器人技术及自主机器领域,并在接下来几个月内扩展至数据科学、自然语言处理、语音和会话式AI等其他领域。
据IDC估计,到2023年,全球机器人系统和无人机领域相关支出将增至2414亿美元,较针对 2020 年预计的1287亿美元提升88%。
这项新计划将帮助研究人员及其合作机构推广在NVIDIA AI软硬件平台上开发的新一代应用程序,包括Jetson平台、NVIDIA Isaac以及DeepStream软件开发套件。
除了进行交流和市场宣传的机会之外,NVIDIA还将为开展合作的研究人员和机构提供技术指导、硬件捐赠、资金、资助申请帮助以及AI训练计划方面的支持。
NVIDIA现在正在将部分研究人员和企业开发的应用程序纳入该计划。这些研究人员致力于将机器人技术和AI应用于自动化系统中,而这些企业则希望将新的技术推向市场。
加速并部署AI研究
NVIDIA 应用研究加速器计划的首批参与者已经展示了值得进一步开发的AI技术能力。
应用研究加速器计划权益
当学术研究人员能够验证AI在实际应用中具有可行性时,NVIDIA能够为其提供硬件捐赠及资金,还可以为研究人员提交的第三方资助申请提供佐证书。
应用研究加速器计划成员还将获得NVIDIA GPU(包括Jetson)的相关技术指南访问权限。
这项新计划的成员还有机会参加深度学习学院(Deep Learning Institute)培训课程,以获取关于特定AI应用的详细信息。
NVIDIA还为研究人员提供在GTC大会上进行展示和交流的机会。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。