美国劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)已经部署了一个代号“Mammoth”的大内存高性能计算集群,该集群使用AMD的芯片帮助科学家们进行COVID-19方面的研究。
Mammoth系统由64台服务器组成,每台服务器均配备了2个AMD Epyc CPU。
该系统总共有8192个处理器核心,据说在处理双精度浮点值时的峰值性能为294 teraflops。双精度浮点值是一种数据单位,每个单位占用64个位,在科学计算中很受欢迎,因为可以容纳非常大的分数。
Mammoth与大多数高性能计算群集的不同之处在于,它的亮点是内存而不是原始计算能力。这64台服务器中,每台服务器都是基于2个Epyc CPU的,有2 TB高速DRAM内存,以及近4 TB的非易失性内存。
这种不同寻常的系统设计与计算效率有关。劳伦斯·利弗莫尔国家实验室的科学家正在运行病毒模拟和其他需要处理大量数据集的复杂工作负载,用于进行COVID-19方面的研究。
这些数据集在某些情况下过于庞大使得标准服务器内存无法容纳,因此必须在多台计算机之间进行拆分,这会导致效率低下,从而降低了处理速度。Mammoth系统的内存优化服务器打破了这个限制。
劳伦斯·利弗莫尔国家实验室的计算机科学家Thomas Desautels解释说:“在我们的工作流程中,我们使用Rosetta Flex来计算结合自由能(一种蛋白质特性),Rosetta Flex代码在其他系统上运行的时候会受到内存的限制,每个计算最多可以同时运行12或者16次计算。Mammoth让我们能够在单个节点上同时运行128个Rosetta Flex计算,从而将吞吐量提高约8倍。”
据称Mammoth可以将某些基因组分析的时间从几天缩短到几个小时。此外,劳伦斯·利弗莫尔国家实验室的科学家们花费在将数据集分成较小的块以克服服务器内存限制上的时间,也进一步缩短了。
该项目也让AMD Epyc CPU在能够支持内存密集型计算能力的背景下,得到了更有力的验证。能够将大量数据一次性地存储在内存中,这一能力不仅对科学工作负载很重要,对于企业分析应用和数据库这一庞大的市场来说也很重要。
同时,Mammoth系统也是AMD最近一系列高性能计算最新成果之一。此前,AMD与HPE旗下Cray受美国能源部委托合作构建了占地面积达两个篮球场大小的1.5exaflop超级计算机。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。