在AWS运行NVIDIA GPU十周年之际,AWS发布了采用全新A100的Amazon EC2 P4d实例
十年前,AWS(Amazon Web Services)发布了首个采用NVIDIA M2050 GPU的实例。当时,基于CUDA的应用主要专注于加速科学模拟,AI和深度学习还遥遥无期。

自那时起,AW就不断扩充云端GPU实例阵容,包括K80(p2)、K520(g3)、M60(g4)、V100(p3 / p3dn)和T4(g4)。
现在,已全面上市的全新AWS P4d实例采用最新NVIDIA A100 Tensor Core GPU,开启了加速计算的下一个十年。
全新的P4d实例,为机器学习训练和高性能计算应用提供AWS上性能与成本效益最高的GPU平台。与默认的FP32精度相比,全新实例将FP16机器学习模型的训练时间减少多达3倍,将TF32机器学习模型的训练的时间减少多达6倍。
这些实例还提供出色的推理性能。NVIDIA A100 GPU在最近的MLPerf Inference基准测试中一骑绝尘,实现了比CPU快237倍的性能。
每个P4d实例均内置八个NVIDIA A100 GPU,通过AWS UltraClusters,客户可以利用AWS的Elastic Fabric Adapter(EFA)和Amazon FSx提供的可扩展高性能存储,按需、可扩展地同时访问多达4,000多个GPU。P4d提供400Gbps网络,通过使用NVLink、NVSwitch、NCCL和GPUDirect RDMA等NVIDIA技术,进一步加速深度学习训练的工作负载。EFA上的NVIDIA GPUDirect RDMA在服务器之间可通过GPU传输数据,无需通过CPU和系统内存,从而确保网络的低延迟。
此外,许多AWS服务都支持P4d实例,包括Amazon Elastic Container Services、Amazon Elastic Kubernetes Service、AWS ParallelCluster和Amazon SageMaker。P4d还可使用所有NGC提供的经过优化的容器化软件,包括HPC应用、AI框架、预训练模型、Helm图表以及TensorRT和Triton Inference Server等推理软件。
目前,P4d实例已在美国东部和西部上市,并将很快扩展到其他地区。用户可以通过按需实例(On-Demand)、Savings Plans、预留实例(Reserved Instances)或竞价型实例(Spot Instances)几种不同的方式进行购买。
GPU云计算发展最初的十年,已为市场带来超过100 exaflops的AI计算。随着基于NVIDIA A100 GPU的Amazon EC2 P4d实例的问世,GPU云计算的下一个十年将迎来一个美好的开端。
NVIDIA和AWS不断帮助各种应用突破AI的界限,以便了解客户将如何运用AI强大的性能。
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。