在AWS运行NVIDIA GPU十周年之际,AWS发布了采用全新A100的Amazon EC2 P4d实例
十年前,AWS(Amazon Web Services)发布了首个采用NVIDIA M2050 GPU的实例。当时,基于CUDA的应用主要专注于加速科学模拟,AI和深度学习还遥遥无期。
自那时起,AW就不断扩充云端GPU实例阵容,包括K80(p2)、K520(g3)、M60(g4)、V100(p3 / p3dn)和T4(g4)。
现在,已全面上市的全新AWS P4d实例采用最新NVIDIA A100 Tensor Core GPU,开启了加速计算的下一个十年。
全新的P4d实例,为机器学习训练和高性能计算应用提供AWS上性能与成本效益最高的GPU平台。与默认的FP32精度相比,全新实例将FP16机器学习模型的训练时间减少多达3倍,将TF32机器学习模型的训练的时间减少多达6倍。
这些实例还提供出色的推理性能。NVIDIA A100 GPU在最近的MLPerf Inference基准测试中一骑绝尘,实现了比CPU快237倍的性能。
每个P4d实例均内置八个NVIDIA A100 GPU,通过AWS UltraClusters,客户可以利用AWS的Elastic Fabric Adapter(EFA)和Amazon FSx提供的可扩展高性能存储,按需、可扩展地同时访问多达4,000多个GPU。P4d提供400Gbps网络,通过使用NVLink、NVSwitch、NCCL和GPUDirect RDMA等NVIDIA技术,进一步加速深度学习训练的工作负载。EFA上的NVIDIA GPUDirect RDMA在服务器之间可通过GPU传输数据,无需通过CPU和系统内存,从而确保网络的低延迟。
此外,许多AWS服务都支持P4d实例,包括Amazon Elastic Container Services、Amazon Elastic Kubernetes Service、AWS ParallelCluster和Amazon SageMaker。P4d还可使用所有NGC提供的经过优化的容器化软件,包括HPC应用、AI框架、预训练模型、Helm图表以及TensorRT和Triton Inference Server等推理软件。
目前,P4d实例已在美国东部和西部上市,并将很快扩展到其他地区。用户可以通过按需实例(On-Demand)、Savings Plans、预留实例(Reserved Instances)或竞价型实例(Spot Instances)几种不同的方式进行购买。
GPU云计算发展最初的十年,已为市场带来超过100 exaflops的AI计算。随着基于NVIDIA A100 GPU的Amazon EC2 P4d实例的问世,GPU云计算的下一个十年将迎来一个美好的开端。
NVIDIA和AWS不断帮助各种应用突破AI的界限,以便了解客户将如何运用AI强大的性能。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。