在AWS运行NVIDIA GPU十周年之际,AWS发布了采用全新A100的Amazon EC2 P4d实例
十年前,AWS(Amazon Web Services)发布了首个采用NVIDIA M2050 GPU的实例。当时,基于CUDA的应用主要专注于加速科学模拟,AI和深度学习还遥遥无期。
自那时起,AW就不断扩充云端GPU实例阵容,包括K80(p2)、K520(g3)、M60(g4)、V100(p3 / p3dn)和T4(g4)。
现在,已全面上市的全新AWS P4d实例采用最新NVIDIA A100 Tensor Core GPU,开启了加速计算的下一个十年。
全新的P4d实例,为机器学习训练和高性能计算应用提供AWS上性能与成本效益最高的GPU平台。与默认的FP32精度相比,全新实例将FP16机器学习模型的训练时间减少多达3倍,将TF32机器学习模型的训练的时间减少多达6倍。
这些实例还提供出色的推理性能。NVIDIA A100 GPU在最近的MLPerf Inference基准测试中一骑绝尘,实现了比CPU快237倍的性能。
每个P4d实例均内置八个NVIDIA A100 GPU,通过AWS UltraClusters,客户可以利用AWS的Elastic Fabric Adapter(EFA)和Amazon FSx提供的可扩展高性能存储,按需、可扩展地同时访问多达4,000多个GPU。P4d提供400Gbps网络,通过使用NVLink、NVSwitch、NCCL和GPUDirect RDMA等NVIDIA技术,进一步加速深度学习训练的工作负载。EFA上的NVIDIA GPUDirect RDMA在服务器之间可通过GPU传输数据,无需通过CPU和系统内存,从而确保网络的低延迟。
此外,许多AWS服务都支持P4d实例,包括Amazon Elastic Container Services、Amazon Elastic Kubernetes Service、AWS ParallelCluster和Amazon SageMaker。P4d还可使用所有NGC提供的经过优化的容器化软件,包括HPC应用、AI框架、预训练模型、Helm图表以及TensorRT和Triton Inference Server等推理软件。
目前,P4d实例已在美国东部和西部上市,并将很快扩展到其他地区。用户可以通过按需实例(On-Demand)、Savings Plans、预留实例(Reserved Instances)或竞价型实例(Spot Instances)几种不同的方式进行购买。
GPU云计算发展最初的十年,已为市场带来超过100 exaflops的AI计算。随着基于NVIDIA A100 GPU的Amazon EC2 P4d实例的问世,GPU云计算的下一个十年将迎来一个美好的开端。
NVIDIA和AWS不断帮助各种应用突破AI的界限,以便了解客户将如何运用AI强大的性能。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。