颇具影响力的芯片设计公司Nvidia已经提出以400亿美元收购Arm。本周二,Arm详细介绍了两款针对服务器市场设计的芯片,有望在性能上实现大幅提升。
Arm的半导体设计蓝图是全球大多数智能手机和其他无数设备的处理器基石。近年来,Arm还在数据中心领域站稳了脚跟。
本周Arm推出的Neoverse V1和N2芯片设计,可以被半导体制造商作为服务器级CPU的基础,是Arm现有产品Neoverse N1(已经被AWS在云平台中采用)的后续产品。除了AWS,七大超大规模数据中心运营商中有四家也已经采用了Neoverse N1。
V1和N2的性能分别比当前的N1高出50%和40%。Arm表示,V1专为那些每个线程都提供了较高性能的CPU设计,而N2是专门为有高核心数的CPU设计的。最适合采用哪种芯片主要取决于企业运行的哪种应用:例如,按CPU核心计费的软件产品,最好是运行在核心较少、单线程性能较高的CPU上。
Arm表示,V1和N2都兼容目前芯片业内所采用的最新5纳米制程工艺,此外还支持其他很多面向特定用途的技术。
另一项新增功能是SVE,这项技术让科学仿真和部署在超级计算机上的其他工作负荷从中受益,这些应用通常把那些以数据单元形式经过处理的数据保存为向量。SVE让芯片制造商可以根据客户的需求,自定义CPU可以处理向量的最大尺寸,这种灵活性让客户可以打造更加高效、更加精细的处理器。
还有一项名为Compute Express Link 的互连功能,通常用于将机器学习加速器和其他专用芯片连接到服务器。这是一个重要的补充,因为随着企业越来越多地采用人工智能,机器学习加速器也在普及,这是Arm现在应该更好去应对的一个重要行业趋势。
N2是针对开发高核心数CPU的芯片新设计,其目标不仅仅是服务器。Arm说,N2还可作为其他数据中心设备包括路由器和交换机的处理器基础。
目前已经有早期客户在测试N2,预计明年全面上市,V1则已经发布。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。