颇具影响力的芯片设计公司Nvidia已经提出以400亿美元收购Arm。本周二,Arm详细介绍了两款针对服务器市场设计的芯片,有望在性能上实现大幅提升。
Arm的半导体设计蓝图是全球大多数智能手机和其他无数设备的处理器基石。近年来,Arm还在数据中心领域站稳了脚跟。
本周Arm推出的Neoverse V1和N2芯片设计,可以被半导体制造商作为服务器级CPU的基础,是Arm现有产品Neoverse N1(已经被AWS在云平台中采用)的后续产品。除了AWS,七大超大规模数据中心运营商中有四家也已经采用了Neoverse N1。
V1和N2的性能分别比当前的N1高出50%和40%。Arm表示,V1专为那些每个线程都提供了较高性能的CPU设计,而N2是专门为有高核心数的CPU设计的。最适合采用哪种芯片主要取决于企业运行的哪种应用:例如,按CPU核心计费的软件产品,最好是运行在核心较少、单线程性能较高的CPU上。
Arm表示,V1和N2都兼容目前芯片业内所采用的最新5纳米制程工艺,此外还支持其他很多面向特定用途的技术。
另一项新增功能是SVE,这项技术让科学仿真和部署在超级计算机上的其他工作负荷从中受益,这些应用通常把那些以数据单元形式经过处理的数据保存为向量。SVE让芯片制造商可以根据客户的需求,自定义CPU可以处理向量的最大尺寸,这种灵活性让客户可以打造更加高效、更加精细的处理器。
还有一项名为Compute Express Link 的互连功能,通常用于将机器学习加速器和其他专用芯片连接到服务器。这是一个重要的补充,因为随着企业越来越多地采用人工智能,机器学习加速器也在普及,这是Arm现在应该更好去应对的一个重要行业趋势。
N2是针对开发高核心数CPU的芯片新设计,其目标不仅仅是服务器。Arm说,N2还可作为其他数据中心设备包括路由器和交换机的处理器基础。
目前已经有早期客户在测试N2,预计明年全面上市,V1则已经发布。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。